磁电多铁性的第一性原理方法

IF 14.3 1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER
Changsong Xu, Hongyu Yu, Junling Wang, Hongjun Xiang
{"title":"磁电多铁性的第一性原理方法","authors":"Changsong Xu, Hongyu Yu, Junling Wang, Hongjun Xiang","doi":"10.1146/annurev-conmatphys-032922-102353","DOIUrl":null,"url":null,"abstract":"Magnetoelectric multiferroics, which display both ferroelectric and magnetic orders, are appealing because of their rich fundamental physics and promising technological applications. The revival of multiferroics since 2003 led to a comprehensive understanding of the mechanisms that facilitate the coexistence of electric and magnetic orders and conceptually new design strategies for device architectures, which brought us an important step closer to multiferroic-based technology. In the past thirty years, first-principles calculations based on the laws of quantum mechanics played a crucial role in understanding the electronic, magnetic, and structural properties of multiferroics and guided the design of new multiferroics with improved properties. In this review, we provide a comprehensive overview of first-principles approaches to magnetoelectric multiferroics, especially in low-dimensional forms. In particular, we discuss methods to build an effective Hamiltonian from first principles for magnets, ferroelectrics, and multiferroics. The recently developed machine learning potential approach for multiferroics is also outlined. Furthermore, we present the unified model for spin-induced ferroelectricity and methods for computing the linear magnetoelectric coupling tensor. Finally, recent progress in multiferroic systems and the applications of first-principles approaches to these systems are reviewed.Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 15 is March 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"45 12","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-Principles Approaches to Magnetoelectric Multiferroics\",\"authors\":\"Changsong Xu, Hongyu Yu, Junling Wang, Hongjun Xiang\",\"doi\":\"10.1146/annurev-conmatphys-032922-102353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetoelectric multiferroics, which display both ferroelectric and magnetic orders, are appealing because of their rich fundamental physics and promising technological applications. The revival of multiferroics since 2003 led to a comprehensive understanding of the mechanisms that facilitate the coexistence of electric and magnetic orders and conceptually new design strategies for device architectures, which brought us an important step closer to multiferroic-based technology. In the past thirty years, first-principles calculations based on the laws of quantum mechanics played a crucial role in understanding the electronic, magnetic, and structural properties of multiferroics and guided the design of new multiferroics with improved properties. In this review, we provide a comprehensive overview of first-principles approaches to magnetoelectric multiferroics, especially in low-dimensional forms. In particular, we discuss methods to build an effective Hamiltonian from first principles for magnets, ferroelectrics, and multiferroics. The recently developed machine learning potential approach for multiferroics is also outlined. Furthermore, we present the unified model for spin-induced ferroelectricity and methods for computing the linear magnetoelectric coupling tensor. Finally, recent progress in multiferroic systems and the applications of first-principles approaches to these systems are reviewed.Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 15 is March 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":7925,\"journal\":{\"name\":\"Annual Review of Condensed Matter Physics\",\"volume\":\"45 12\",\"pages\":\"\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Condensed Matter Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-conmatphys-032922-102353\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-conmatphys-032922-102353","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

磁电多铁材料,既显示铁电序又显示磁序,因其丰富的基础物理和有前景的技术应用而受到人们的欢迎。自2003年以来,多铁性材料的复兴导致了对促进电和磁顺序共存的机制的全面理解,以及器件架构的概念新设计策略,这使我们向基于多铁性的技术迈出了重要的一步。在过去的三十年中,基于量子力学定律的第一性原理计算在理解多铁材料的电子、磁性和结构特性方面发挥了至关重要的作用,并指导了具有改进性能的新型多铁材料的设计。在这篇综述中,我们提供了一个全面的第一性原理方法的磁电多铁性,特别是在低维形式。特别地,我们讨论了从磁体、铁电体和多铁体的第一性原理建立有效哈密顿量的方法。本文还概述了最近开发的多铁学机器学习的潜在方法。此外,我们还提出了自旋诱导铁电的统一模型和线性磁电耦合张量的计算方法。最后,综述了多铁系统的最新进展以及第一性原理方法在这些系统中的应用。预计《凝聚态物理年度评论》第15卷的最终在线出版日期为2024年3月。修订后的估计数请参阅http://www.annualreviews.org/page/journal/pubdates。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
First-Principles Approaches to Magnetoelectric Multiferroics
Magnetoelectric multiferroics, which display both ferroelectric and magnetic orders, are appealing because of their rich fundamental physics and promising technological applications. The revival of multiferroics since 2003 led to a comprehensive understanding of the mechanisms that facilitate the coexistence of electric and magnetic orders and conceptually new design strategies for device architectures, which brought us an important step closer to multiferroic-based technology. In the past thirty years, first-principles calculations based on the laws of quantum mechanics played a crucial role in understanding the electronic, magnetic, and structural properties of multiferroics and guided the design of new multiferroics with improved properties. In this review, we provide a comprehensive overview of first-principles approaches to magnetoelectric multiferroics, especially in low-dimensional forms. In particular, we discuss methods to build an effective Hamiltonian from first principles for magnets, ferroelectrics, and multiferroics. The recently developed machine learning potential approach for multiferroics is also outlined. Furthermore, we present the unified model for spin-induced ferroelectricity and methods for computing the linear magnetoelectric coupling tensor. Finally, recent progress in multiferroic systems and the applications of first-principles approaches to these systems are reviewed.Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 15 is March 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Review of Condensed Matter Physics
Annual Review of Condensed Matter Physics PHYSICS, CONDENSED MATTER-
CiteScore
47.40
自引率
0.90%
发文量
27
期刊介绍: Since its inception in 2010, the Annual Review of Condensed Matter Physics has been chronicling significant advancements in the field and its related subjects. By highlighting recent developments and offering critical evaluations, the journal actively contributes to the ongoing discourse in condensed matter physics. The latest volume of the journal has transitioned from gated access to open access, facilitated by Annual Reviews' Subscribe to Open initiative. Under this program, all articles are now published under a CC BY license, ensuring broader accessibility and dissemination of knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信