Khai Wei Tan, Jeremy Kaiwei Lew, Poay Sian Sabrina Lee, Sin Kee Ong, Hui Li Koh, Doris Yee Ling Young, Eng Sing Lee
{"title":"糖尿病自我报告与医疗记录的一致性:新加坡综合诊所数据的比较研究。","authors":"Khai Wei Tan, Jeremy Kaiwei Lew, Poay Sian Sabrina Lee, Sin Kee Ong, Hui Li Koh, Doris Yee Ling Young, Eng Sing Lee","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Studies of concordance between patients' self-report of diseases and a criterion standard (e.g. chart review) are usually conducted in epidemiological studies to evaluate the agreement of self-reported data for use in public health research. To our knowledge, there are no published studies on concordance for highly prevalent chronic diseases such as diabetes and pre-diabetes. The aims of this study were to evaluate the concordance between patients' self-report and their medical records of diabetes and pre-diabetes diagnoses, and to identify factors associated with diabetes concordance.</p><p><strong>Method: </strong>A cross-sectional, interviewer-administered survey was conducted on patients with chronic diseases after obtaining written consent to assess their medical notes. Interviewers were blinded to the participants' profiles. Concordance was evaluated using Cohen's kappa (κ). A multivariable logistic regression model was used to identify factors associated with diabetes concordance.</p><p><strong>Results: </strong>There was substantial agreement between self-reported and medical records of diabetes diagnoses (κ=0.76) and fair agreement for pre-diabetes diagnoses (κ=0.36). The logistic regression model suggested that non-Chinese patients had higher odds of diabetes concordance than Chinese patients (odds ratio [OR]=4.10, 95% confidence interval [CI] 1.19-14.13, <i>P</i>=0.03). Patients with 3 or more chronic diseases (i.e. multimorbidity) had lower odds of diabetes concordance than patients without multimorbidity (OR=0.21, 95% CI 0.09-0.48, <i>P</i><0.001).</p><p><strong>Conclusion: </strong>Diabetes concordance was substantial, supporting the use of self-report of diabetes by patients with chronic diseases in the primary care setting for future research. Pre-diabetes concordance was fair and may have important clinical implications. Further studies to explore and improve health literacy and patient-physician communication are needed.</p>","PeriodicalId":50774,"journal":{"name":"Annals Academy of Medicine Singapore","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concordance of self-reporting of diabetes compared with medical records: A comparative study using polyclinic data in Singapore.\",\"authors\":\"Khai Wei Tan, Jeremy Kaiwei Lew, Poay Sian Sabrina Lee, Sin Kee Ong, Hui Li Koh, Doris Yee Ling Young, Eng Sing Lee\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Studies of concordance between patients' self-report of diseases and a criterion standard (e.g. chart review) are usually conducted in epidemiological studies to evaluate the agreement of self-reported data for use in public health research. To our knowledge, there are no published studies on concordance for highly prevalent chronic diseases such as diabetes and pre-diabetes. The aims of this study were to evaluate the concordance between patients' self-report and their medical records of diabetes and pre-diabetes diagnoses, and to identify factors associated with diabetes concordance.</p><p><strong>Method: </strong>A cross-sectional, interviewer-administered survey was conducted on patients with chronic diseases after obtaining written consent to assess their medical notes. Interviewers were blinded to the participants' profiles. Concordance was evaluated using Cohen's kappa (κ). A multivariable logistic regression model was used to identify factors associated with diabetes concordance.</p><p><strong>Results: </strong>There was substantial agreement between self-reported and medical records of diabetes diagnoses (κ=0.76) and fair agreement for pre-diabetes diagnoses (κ=0.36). The logistic regression model suggested that non-Chinese patients had higher odds of diabetes concordance than Chinese patients (odds ratio [OR]=4.10, 95% confidence interval [CI] 1.19-14.13, <i>P</i>=0.03). Patients with 3 or more chronic diseases (i.e. multimorbidity) had lower odds of diabetes concordance than patients without multimorbidity (OR=0.21, 95% CI 0.09-0.48, <i>P</i><0.001).</p><p><strong>Conclusion: </strong>Diabetes concordance was substantial, supporting the use of self-report of diabetes by patients with chronic diseases in the primary care setting for future research. Pre-diabetes concordance was fair and may have important clinical implications. Further studies to explore and improve health literacy and patient-physician communication are needed.</p>\",\"PeriodicalId\":50774,\"journal\":{\"name\":\"Annals Academy of Medicine Singapore\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals Academy of Medicine Singapore\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals Academy of Medicine Singapore","FirstCategoryId":"3","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Concordance of self-reporting of diabetes compared with medical records: A comparative study using polyclinic data in Singapore.
Introduction: Studies of concordance between patients' self-report of diseases and a criterion standard (e.g. chart review) are usually conducted in epidemiological studies to evaluate the agreement of self-reported data for use in public health research. To our knowledge, there are no published studies on concordance for highly prevalent chronic diseases such as diabetes and pre-diabetes. The aims of this study were to evaluate the concordance between patients' self-report and their medical records of diabetes and pre-diabetes diagnoses, and to identify factors associated with diabetes concordance.
Method: A cross-sectional, interviewer-administered survey was conducted on patients with chronic diseases after obtaining written consent to assess their medical notes. Interviewers were blinded to the participants' profiles. Concordance was evaluated using Cohen's kappa (κ). A multivariable logistic regression model was used to identify factors associated with diabetes concordance.
Results: There was substantial agreement between self-reported and medical records of diabetes diagnoses (κ=0.76) and fair agreement for pre-diabetes diagnoses (κ=0.36). The logistic regression model suggested that non-Chinese patients had higher odds of diabetes concordance than Chinese patients (odds ratio [OR]=4.10, 95% confidence interval [CI] 1.19-14.13, P=0.03). Patients with 3 or more chronic diseases (i.e. multimorbidity) had lower odds of diabetes concordance than patients without multimorbidity (OR=0.21, 95% CI 0.09-0.48, P<0.001).
Conclusion: Diabetes concordance was substantial, supporting the use of self-report of diabetes by patients with chronic diseases in the primary care setting for future research. Pre-diabetes concordance was fair and may have important clinical implications. Further studies to explore and improve health literacy and patient-physician communication are needed.
期刊介绍:
The Annals is the official journal of the Academy of Medicine, Singapore. Established in 1972, Annals is the leading medical journal in Singapore which aims to publish novel findings from clinical research as well as medical practices that can benefit the medical community.