Bin Li, Libing Xiao, Danhong Ye, Siyi Zhong, Qiaoyu Yan
{"title":"NOTUM在断指再植中的表达可能是一个重要的治疗因素","authors":"Bin Li, Libing Xiao, Danhong Ye, Siyi Zhong, Qiaoyu Yan","doi":"10.1111/ahg.12487","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>After years of development, digital replantation has become a mature treatment. Although the <i>NOTUM</i> gene has been shown to be involved in the formation of vertebrate nerves, whether it contributes to the osteogenic mechanism of severed finger replantation remains unknown. In response to this, this study investigates the specific details of <i>NOTUM</i> involvement in replantation of severed fingers.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>The experimental subjects are patients with replantation of severed fingers from Shulan International Medical College of Shulan (Hangzhou) Hospital affiliated to Zhejiang Shuren University. In addition to using bone marrow mesenchymal stem cells (BMSCs) as an in vitro system, this experiment also involves quantitative polymerase chain reaction, microarray analysis, cell counting Kit-8, ethynyl deoxyuridine staining and Western blot analysis.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The expression level of NOTUM in the severed finger replantation group is lower than that in the normal group. NOTUM inhibits cell growth and cell transfer, osteogenic differentiation and β-catenin gene expression in BMSCs. Luciferase reporter assay illustrated that β-catenin wild type closely correlated with NOTUM. The inhibition of β-catenin increases the effects of <i>NOTUM</i> on cell growth, cell transfer and osteogenic differentiation of BMSCs.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Considering that <i>NOTUM</i> can inhibit cell growth, cell transfer, osteogenic differentiation of BMSCs, as well as the gene expression of β-catenin, it may be a biomarker of osteogenic differentiation and a potential therapeutic target for replantation of severed fingers.</p>\n </section>\n </div>","PeriodicalId":8085,"journal":{"name":"Annals of Human Genetics","volume":"87 1-2","pages":"18-27"},"PeriodicalIF":1.0000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The expression of NOTUM in replantation of severed fingers may be an important treatment factor\",\"authors\":\"Bin Li, Libing Xiao, Danhong Ye, Siyi Zhong, Qiaoyu Yan\",\"doi\":\"10.1111/ahg.12487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>After years of development, digital replantation has become a mature treatment. Although the <i>NOTUM</i> gene has been shown to be involved in the formation of vertebrate nerves, whether it contributes to the osteogenic mechanism of severed finger replantation remains unknown. In response to this, this study investigates the specific details of <i>NOTUM</i> involvement in replantation of severed fingers.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>The experimental subjects are patients with replantation of severed fingers from Shulan International Medical College of Shulan (Hangzhou) Hospital affiliated to Zhejiang Shuren University. In addition to using bone marrow mesenchymal stem cells (BMSCs) as an in vitro system, this experiment also involves quantitative polymerase chain reaction, microarray analysis, cell counting Kit-8, ethynyl deoxyuridine staining and Western blot analysis.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>The expression level of NOTUM in the severed finger replantation group is lower than that in the normal group. NOTUM inhibits cell growth and cell transfer, osteogenic differentiation and β-catenin gene expression in BMSCs. Luciferase reporter assay illustrated that β-catenin wild type closely correlated with NOTUM. The inhibition of β-catenin increases the effects of <i>NOTUM</i> on cell growth, cell transfer and osteogenic differentiation of BMSCs.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>Considering that <i>NOTUM</i> can inhibit cell growth, cell transfer, osteogenic differentiation of BMSCs, as well as the gene expression of β-catenin, it may be a biomarker of osteogenic differentiation and a potential therapeutic target for replantation of severed fingers.</p>\\n </section>\\n </div>\",\"PeriodicalId\":8085,\"journal\":{\"name\":\"Annals of Human Genetics\",\"volume\":\"87 1-2\",\"pages\":\"18-27\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Human Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ahg.12487\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ahg.12487","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
The expression of NOTUM in replantation of severed fingers may be an important treatment factor
Background
After years of development, digital replantation has become a mature treatment. Although the NOTUM gene has been shown to be involved in the formation of vertebrate nerves, whether it contributes to the osteogenic mechanism of severed finger replantation remains unknown. In response to this, this study investigates the specific details of NOTUM involvement in replantation of severed fingers.
Methods
The experimental subjects are patients with replantation of severed fingers from Shulan International Medical College of Shulan (Hangzhou) Hospital affiliated to Zhejiang Shuren University. In addition to using bone marrow mesenchymal stem cells (BMSCs) as an in vitro system, this experiment also involves quantitative polymerase chain reaction, microarray analysis, cell counting Kit-8, ethynyl deoxyuridine staining and Western blot analysis.
Results
The expression level of NOTUM in the severed finger replantation group is lower than that in the normal group. NOTUM inhibits cell growth and cell transfer, osteogenic differentiation and β-catenin gene expression in BMSCs. Luciferase reporter assay illustrated that β-catenin wild type closely correlated with NOTUM. The inhibition of β-catenin increases the effects of NOTUM on cell growth, cell transfer and osteogenic differentiation of BMSCs.
Conclusions
Considering that NOTUM can inhibit cell growth, cell transfer, osteogenic differentiation of BMSCs, as well as the gene expression of β-catenin, it may be a biomarker of osteogenic differentiation and a potential therapeutic target for replantation of severed fingers.
期刊介绍:
Annals of Human Genetics publishes material directly concerned with human genetics or the application of scientific principles and techniques to any aspect of human inheritance. Papers that describe work on other species that may be relevant to human genetics will also be considered. Mathematical models should include examples of application to data where possible.
Authors are welcome to submit Supporting Information, such as data sets or additional figures or tables, that will not be published in the print edition of the journal, but which will be viewable via the online edition and stored on the website.