对羟基苯甲酸乙酯酰腙衍生物的抗菌活性研究。

IF 1.8 Q3 PHARMACOLOGY & PHARMACY
Ufuk İnce, M İhsan Han
{"title":"对羟基苯甲酸乙酯酰腙衍生物的抗菌活性研究。","authors":"Ufuk İnce,&nbsp;M İhsan Han","doi":"10.4274/tjps.galenos.2022.57699","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The development of antimicrobial molecules discussed with considerable achievement over the past decades provided many classes of semisynthetic or synthetic compounds. Resistance to many antimicrobial agents requires the discovery of novel molecules.</p><p><strong>Materials and methods: </strong>In this study, ten ethylparaben hydrazide-hydrazone derivatives, the previously reported, were evaluated for their <i>in vitro</i> antibacterial and antifungal activities. The microbroth dilution method was used for the determination of the minimum inhibitory concentration (MIC) values of the novel molecules.</p><p><strong>Results: </strong>The antimicrobial activities of the molecules were found in a wide range with MIC values of 2-256 μg/mL. The synthesized compounds showed good to moderate antimicrobial activity compared with the standards. Among the synthesized molecules, compound 3g showed the best antimicrobial activity at 2 μg/mL against <i>Staphylococcus aureus</i> strain (ATCC 29213).</p><p><strong>Conclusion: </strong>Ethylparaben hydrazide-hydrazone compounds in our study were found to have antimicrobial activities. Ethylparaben is currently used as an antibacterial agent and preservative for preparations. These studies are necessary since they detect the relationship between the substitutions and activity.</p>","PeriodicalId":23378,"journal":{"name":"Turkish Journal of Pharmaceutical Sciences","volume":"20 1","pages":"35-38"},"PeriodicalIF":1.8000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9986940/pdf/TJPS-20-35.pdf","citationCount":"0","resultStr":"{\"title\":\"Investigation of Antimicrobial Activity of Some Ethylparaben Hydrazide-Hydrazone Derivatives.\",\"authors\":\"Ufuk İnce,&nbsp;M İhsan Han\",\"doi\":\"10.4274/tjps.galenos.2022.57699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>The development of antimicrobial molecules discussed with considerable achievement over the past decades provided many classes of semisynthetic or synthetic compounds. Resistance to many antimicrobial agents requires the discovery of novel molecules.</p><p><strong>Materials and methods: </strong>In this study, ten ethylparaben hydrazide-hydrazone derivatives, the previously reported, were evaluated for their <i>in vitro</i> antibacterial and antifungal activities. The microbroth dilution method was used for the determination of the minimum inhibitory concentration (MIC) values of the novel molecules.</p><p><strong>Results: </strong>The antimicrobial activities of the molecules were found in a wide range with MIC values of 2-256 μg/mL. The synthesized compounds showed good to moderate antimicrobial activity compared with the standards. Among the synthesized molecules, compound 3g showed the best antimicrobial activity at 2 μg/mL against <i>Staphylococcus aureus</i> strain (ATCC 29213).</p><p><strong>Conclusion: </strong>Ethylparaben hydrazide-hydrazone compounds in our study were found to have antimicrobial activities. Ethylparaben is currently used as an antibacterial agent and preservative for preparations. These studies are necessary since they detect the relationship between the substitutions and activity.</p>\",\"PeriodicalId\":23378,\"journal\":{\"name\":\"Turkish Journal of Pharmaceutical Sciences\",\"volume\":\"20 1\",\"pages\":\"35-38\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9986940/pdf/TJPS-20-35.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Pharmaceutical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4274/tjps.galenos.2022.57699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4274/tjps.galenos.2022.57699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

目的:在过去的几十年里,抗菌分子的发展取得了相当大的成就,提供了许多类别的半合成或合成化合物。对许多抗菌剂的耐药性需要发现新的分子。材料与方法:对已报道的10种对羟基苯甲酸乙酯酰腙衍生物进行体外抗菌和抗真菌活性评价。采用微肉汤稀释法测定新分子的最低抑菌浓度(MIC)。结果:各分子的抑菌活性范围广,MIC值为2 ~ 256 μg/mL。与标准化合物比较,合成的化合物具有良好至中等的抗菌活性。在所合成的分子中,化合物3g对金黄色葡萄球菌(ATCC 29213)的抑菌活性在2 μg/mL时表现最佳。结论:本研究发现对羟基苯甲酸乙酯酰腙类化合物具有抗菌活性。对羟基苯甲酸乙酯目前用作制剂的抗菌剂和防腐剂。这些研究是必要的,因为它们检测了取代和活性之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of Antimicrobial Activity of Some Ethylparaben Hydrazide-Hydrazone Derivatives.

Objectives: The development of antimicrobial molecules discussed with considerable achievement over the past decades provided many classes of semisynthetic or synthetic compounds. Resistance to many antimicrobial agents requires the discovery of novel molecules.

Materials and methods: In this study, ten ethylparaben hydrazide-hydrazone derivatives, the previously reported, were evaluated for their in vitro antibacterial and antifungal activities. The microbroth dilution method was used for the determination of the minimum inhibitory concentration (MIC) values of the novel molecules.

Results: The antimicrobial activities of the molecules were found in a wide range with MIC values of 2-256 μg/mL. The synthesized compounds showed good to moderate antimicrobial activity compared with the standards. Among the synthesized molecules, compound 3g showed the best antimicrobial activity at 2 μg/mL against Staphylococcus aureus strain (ATCC 29213).

Conclusion: Ethylparaben hydrazide-hydrazone compounds in our study were found to have antimicrobial activities. Ethylparaben is currently used as an antibacterial agent and preservative for preparations. These studies are necessary since they detect the relationship between the substitutions and activity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
5.90%
发文量
79
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信