Zoltán Kenyeres, Lőrinc Andrási, Péter Kovács, András Márkus, Tamás Sáringer-Kenyeres
{"title":"生物试剂哨兵2.0诱捕法和人登陆捕法计算人咬人率的效率。","authors":"Zoltán Kenyeres, Lőrinc Andrási, Péter Kovács, András Márkus, Tamás Sáringer-Kenyeres","doi":"10.2987/22-7078","DOIUrl":null,"url":null,"abstract":"<p><p>To calculate human biting rates for various mosquito species, we performed simultaneous collections for 15 wk at 6 ecologically variable sites in Hungary. Of the dominant species, the relative abundance of Aedes vexans, Ae. sticticus, and Coquillettidia richiardii showed a significant positive correlation between CO2 + Biogents lure and human landing catch (HLC). The relative abundance of Culex pipiens was significantly lower in the HLC samples than in the CO2 + BG lure samples. Of the invasive species, Aedes korecius was found more frequently in HLC, while Ae. japonicus was more common in CO2 + BG lure samples. Estimated human biting rates, determined with the 2 collection methods, showed no significant differences at high mosquito density (100-120 bites/h/person), but there was considerable variation at low mosquito biting rates. Therefore, correcting the CO2 + BG lure trapping data to include only species biting humans provides estimates approaching the values of the HLC. Our study confirmed that while HLC is the gold standard method for determining the human biting rate, provided appropriate data adjustments are made, trapping methods performing automated data collection can provide similar data while reducing the exposure of the data collector.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Efficiency of Biogents Sentinel 2.0 Trapping and Human-Landing Catching Methods to Calculate Human Biting Rates.\",\"authors\":\"Zoltán Kenyeres, Lőrinc Andrási, Péter Kovács, András Márkus, Tamás Sáringer-Kenyeres\",\"doi\":\"10.2987/22-7078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To calculate human biting rates for various mosquito species, we performed simultaneous collections for 15 wk at 6 ecologically variable sites in Hungary. Of the dominant species, the relative abundance of Aedes vexans, Ae. sticticus, and Coquillettidia richiardii showed a significant positive correlation between CO2 + Biogents lure and human landing catch (HLC). The relative abundance of Culex pipiens was significantly lower in the HLC samples than in the CO2 + BG lure samples. Of the invasive species, Aedes korecius was found more frequently in HLC, while Ae. japonicus was more common in CO2 + BG lure samples. Estimated human biting rates, determined with the 2 collection methods, showed no significant differences at high mosquito density (100-120 bites/h/person), but there was considerable variation at low mosquito biting rates. Therefore, correcting the CO2 + BG lure trapping data to include only species biting humans provides estimates approaching the values of the HLC. Our study confirmed that while HLC is the gold standard method for determining the human biting rate, provided appropriate data adjustments are made, trapping methods performing automated data collection can provide similar data while reducing the exposure of the data collector.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.2987/22-7078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.2987/22-7078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Efficiency of Biogents Sentinel 2.0 Trapping and Human-Landing Catching Methods to Calculate Human Biting Rates.
To calculate human biting rates for various mosquito species, we performed simultaneous collections for 15 wk at 6 ecologically variable sites in Hungary. Of the dominant species, the relative abundance of Aedes vexans, Ae. sticticus, and Coquillettidia richiardii showed a significant positive correlation between CO2 + Biogents lure and human landing catch (HLC). The relative abundance of Culex pipiens was significantly lower in the HLC samples than in the CO2 + BG lure samples. Of the invasive species, Aedes korecius was found more frequently in HLC, while Ae. japonicus was more common in CO2 + BG lure samples. Estimated human biting rates, determined with the 2 collection methods, showed no significant differences at high mosquito density (100-120 bites/h/person), but there was considerable variation at low mosquito biting rates. Therefore, correcting the CO2 + BG lure trapping data to include only species biting humans provides estimates approaching the values of the HLC. Our study confirmed that while HLC is the gold standard method for determining the human biting rate, provided appropriate data adjustments are made, trapping methods performing automated data collection can provide similar data while reducing the exposure of the data collector.