有机分子组成碳点在癌症治疗中的应用前景。

Q1 Pharmacology, Toxicology and Pharmaceutics
Musbahu Adam Ahmad, Yu-Yu Aung, Alfa Akustia Widati, Satya Candra Wibawa Sakti, Sri Sumarsih, Irzaman Irzaman, Brian Yuliarto, Jia-Yaw Chang, Mochamad Zakki Fahmi
{"title":"有机分子组成碳点在癌症治疗中的应用前景。","authors":"Musbahu Adam Ahmad,&nbsp;Yu-Yu Aung,&nbsp;Alfa Akustia Widati,&nbsp;Satya Candra Wibawa Sakti,&nbsp;Sri Sumarsih,&nbsp;Irzaman Irzaman,&nbsp;Brian Yuliarto,&nbsp;Jia-Yaw Chang,&nbsp;Mochamad Zakki Fahmi","doi":"10.7150/ntno.80076","DOIUrl":null,"url":null,"abstract":"<p><p>Fluorescent Carbon dots (CDs) derived from biologically active sources have shown enhanced activities compared to their precursors. With their prominent potentiality, these small-sized (<10nm) nanomaterials could be easily synthesized from organic sources either by bottom-up or green approach. Their sources could influence the functional groups present on the CDs surfaces. A crude source of organic molecules has been used to develop fluorescent CDs. In addition, pure organic molecules were also valuable in developing practical CDs. Physiologically responsive interaction of CDs with various cellular receptors is possible due to the robust functionalization on their surface. In this review, we studied various literatures from the past ten years that reported the potential application of carbon dots as alternatives in cancer chemotherapy. The selective cytotoxic nature of some of the CDs towards cancer cell lines suggests the role of surface functional groups towards selective interaction, which results in over-expressed proteins characteristic of cancer cell lines. It could be inferred that cheaply sourced CDs could selectively bind to overexpressed proteins in cancer cells with the ultimate effect of cell death induced by apoptosis. In most cases, CDs-induced apoptosis directly or indirectly follows the mitochondrial pathway. Therefore, these nanosized CDs could serve as alternatives to the current kinds of cancer treatments that are expensive and have numerous side effects.</p>","PeriodicalId":36934,"journal":{"name":"Nanotheranostics","volume":"7 2","pages":"187-201"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9925355/pdf/","citationCount":"1","resultStr":"{\"title\":\"A Perspective on Using Organic Molecules Composing Carbon Dots for Cancer Treatment.\",\"authors\":\"Musbahu Adam Ahmad,&nbsp;Yu-Yu Aung,&nbsp;Alfa Akustia Widati,&nbsp;Satya Candra Wibawa Sakti,&nbsp;Sri Sumarsih,&nbsp;Irzaman Irzaman,&nbsp;Brian Yuliarto,&nbsp;Jia-Yaw Chang,&nbsp;Mochamad Zakki Fahmi\",\"doi\":\"10.7150/ntno.80076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fluorescent Carbon dots (CDs) derived from biologically active sources have shown enhanced activities compared to their precursors. With their prominent potentiality, these small-sized (<10nm) nanomaterials could be easily synthesized from organic sources either by bottom-up or green approach. Their sources could influence the functional groups present on the CDs surfaces. A crude source of organic molecules has been used to develop fluorescent CDs. In addition, pure organic molecules were also valuable in developing practical CDs. Physiologically responsive interaction of CDs with various cellular receptors is possible due to the robust functionalization on their surface. In this review, we studied various literatures from the past ten years that reported the potential application of carbon dots as alternatives in cancer chemotherapy. The selective cytotoxic nature of some of the CDs towards cancer cell lines suggests the role of surface functional groups towards selective interaction, which results in over-expressed proteins characteristic of cancer cell lines. It could be inferred that cheaply sourced CDs could selectively bind to overexpressed proteins in cancer cells with the ultimate effect of cell death induced by apoptosis. In most cases, CDs-induced apoptosis directly or indirectly follows the mitochondrial pathway. Therefore, these nanosized CDs could serve as alternatives to the current kinds of cancer treatments that are expensive and have numerous side effects.</p>\",\"PeriodicalId\":36934,\"journal\":{\"name\":\"Nanotheranostics\",\"volume\":\"7 2\",\"pages\":\"187-201\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9925355/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotheranostics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7150/ntno.80076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotheranostics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7150/ntno.80076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 1

摘要

从生物活性来源获得的荧光碳点(CDs)与其前体相比显示出增强的活性。由于潜力巨大,这些小型(
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Perspective on Using Organic Molecules Composing Carbon Dots for Cancer Treatment.

A Perspective on Using Organic Molecules Composing Carbon Dots for Cancer Treatment.

A Perspective on Using Organic Molecules Composing Carbon Dots for Cancer Treatment.

A Perspective on Using Organic Molecules Composing Carbon Dots for Cancer Treatment.

Fluorescent Carbon dots (CDs) derived from biologically active sources have shown enhanced activities compared to their precursors. With their prominent potentiality, these small-sized (<10nm) nanomaterials could be easily synthesized from organic sources either by bottom-up or green approach. Their sources could influence the functional groups present on the CDs surfaces. A crude source of organic molecules has been used to develop fluorescent CDs. In addition, pure organic molecules were also valuable in developing practical CDs. Physiologically responsive interaction of CDs with various cellular receptors is possible due to the robust functionalization on their surface. In this review, we studied various literatures from the past ten years that reported the potential application of carbon dots as alternatives in cancer chemotherapy. The selective cytotoxic nature of some of the CDs towards cancer cell lines suggests the role of surface functional groups towards selective interaction, which results in over-expressed proteins characteristic of cancer cell lines. It could be inferred that cheaply sourced CDs could selectively bind to overexpressed proteins in cancer cells with the ultimate effect of cell death induced by apoptosis. In most cases, CDs-induced apoptosis directly or indirectly follows the mitochondrial pathway. Therefore, these nanosized CDs could serve as alternatives to the current kinds of cancer treatments that are expensive and have numerous side effects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanotheranostics
Nanotheranostics Pharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (miscellaneous)
CiteScore
10.40
自引率
0.00%
发文量
37
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信