Katherine Williams, Kate M J de Mattos-Shipley, Christine L Willis, Andrew M Bailey
{"title":"马来酰胺生物合成基因簇的硅学分析。","authors":"Katherine Williams, Kate M J de Mattos-Shipley, Christine L Willis, Andrew M Bailey","doi":"10.1186/s40694-022-00132-z","DOIUrl":null,"url":null,"abstract":"<p><p>Maleidrides are a family of structurally related fungal natural products, many of which possess diverse, potent bioactivities. Previous identification of several maleidride biosynthetic gene clusters, and subsequent experimental work, has determined the 'core' set of genes required to construct the characteristic medium-sized alicyclic ring with maleic anhydride moieties. Through genome mining, this work has used these core genes to discover ten entirely novel putative maleidride biosynthetic gene clusters, amongst both publicly available genomes, and encoded within the genome of the previously un-sequenced epiheveadride producer Wicklowia aquatica CBS 125634. We have undertaken phylogenetic analyses and comparative bioinformatics on all known and putative maleidride biosynthetic gene clusters to gain further insights regarding these unique biosynthetic pathways.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"9 1","pages":"2"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8851701/pdf/","citationCount":"0","resultStr":"{\"title\":\"In silico analyses of maleidride biosynthetic gene clusters.\",\"authors\":\"Katherine Williams, Kate M J de Mattos-Shipley, Christine L Willis, Andrew M Bailey\",\"doi\":\"10.1186/s40694-022-00132-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Maleidrides are a family of structurally related fungal natural products, many of which possess diverse, potent bioactivities. Previous identification of several maleidride biosynthetic gene clusters, and subsequent experimental work, has determined the 'core' set of genes required to construct the characteristic medium-sized alicyclic ring with maleic anhydride moieties. Through genome mining, this work has used these core genes to discover ten entirely novel putative maleidride biosynthetic gene clusters, amongst both publicly available genomes, and encoded within the genome of the previously un-sequenced epiheveadride producer Wicklowia aquatica CBS 125634. We have undertaken phylogenetic analyses and comparative bioinformatics on all known and putative maleidride biosynthetic gene clusters to gain further insights regarding these unique biosynthetic pathways.</p>\",\"PeriodicalId\":52292,\"journal\":{\"name\":\"Fungal Biology and Biotechnology\",\"volume\":\"9 1\",\"pages\":\"2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8851701/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fungal Biology and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40694-022-00132-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Biology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40694-022-00132-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
摘要
顺丁烯二酸酐是一系列结构相关的真菌天然产物,其中许多具有多种强效生物活性。之前对几个马来酸酐生物合成基因簇的鉴定以及随后的实验工作确定了构建具有马来酸酐分子特征的中型脂环所需的 "核心 "基因。通过基因组挖掘,这项工作利用这些核心基因在公开的基因组中发现了十个全新的马来酸酐生物合成基因簇,并在以前未测序的表海葵生产者 Wicklowia aquatica CBS 125634 的基因组中进行了编码。我们对所有已知和推测的马来酰胺ride 生物合成基因簇进行了系统进化分析和比较生物信息学研究,以进一步了解这些独特的生物合成途径。
In silico analyses of maleidride biosynthetic gene clusters.
Maleidrides are a family of structurally related fungal natural products, many of which possess diverse, potent bioactivities. Previous identification of several maleidride biosynthetic gene clusters, and subsequent experimental work, has determined the 'core' set of genes required to construct the characteristic medium-sized alicyclic ring with maleic anhydride moieties. Through genome mining, this work has used these core genes to discover ten entirely novel putative maleidride biosynthetic gene clusters, amongst both publicly available genomes, and encoded within the genome of the previously un-sequenced epiheveadride producer Wicklowia aquatica CBS 125634. We have undertaken phylogenetic analyses and comparative bioinformatics on all known and putative maleidride biosynthetic gene clusters to gain further insights regarding these unique biosynthetic pathways.