对于某完全正则空间X,与C(X) Riesz同构的Riesz空间的刻划

Hong-Yun Xiong
{"title":"对于某完全正则空间X,与C(X) Riesz同构的Riesz空间的刻划","authors":"Hong-Yun Xiong","doi":"10.1016/S1385-7258(89)80019-8","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>E</em> be an Archimedean Riesz space possessing a weak unit <em>e</em> and let <em>Ω</em> be the collection of all Riesz homomorphisms <em>ø</em> from <em>E</em> onto ℝ such that <em>ø</em>(<em>e</em>)=1. The Gelfand mapping <em>G</em> :<em>x</em>→<em>x</em>^ on <em>E</em> is defined by <em>x</em>^(<em>ø</em>) = <em>ø</em>(<em>x</em>) for all <em>ø</em>∈Ω. We endow Ω with the topology induced by <em>E</em> (i.e., the weakest topology such that each <em>x</em>^ is continuous on <em>Ω</em>). The principal ideal in <em>E</em> generated by <em>e</em> is denoted by <em>I<sub>d</sub></em>(<em>e</em>). The main theorem in this paper says that the following statements (A) and (B) are equivalent.</p><ul><li><span>(A)</span><span><p>There exists a completely regular space <em>X</em> such that <em>E</em> is Riesz isomorphic to the space <em>C</em>(<em>X</em>) of all real continuous functions on <em>X</em>.</p></span></li><li><span>(B)</span><span><p>The following conditions for the Riesz space <em>E</em> hold: (1) <em>E</em> is Archimedean and has a weak unit <em>e</em>; (2) <em>Ω</em> separates the points of <em>E</em>; (3) <em>E</em> is uniformly complete; (4) <em>G</em>(<em>I<sub>d</sub></em>(<em>e</em>)) is norm dense in the space <em>C<sub>b</sub></em>(<em>Ω</em>) of all real bounded continuous functions on <em>Ω</em>; (5) <em>E</em> is 2-universally complete with carrier space <em>Ω</em>.</p></span></li></ul><p>Some other conditions are mentioned and an example is given to show that condition (5) is necessary for (B) ⇒(A).</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"92 1","pages":"Pages 87-95"},"PeriodicalIF":0.0000,"publicationDate":"1989-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(89)80019-8","citationCount":"9","resultStr":"{\"title\":\"A characterization of Riesz spaces which are Riesz isomorphic to C(X) for some completely regular space X\",\"authors\":\"Hong-Yun Xiong\",\"doi\":\"10.1016/S1385-7258(89)80019-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>E</em> be an Archimedean Riesz space possessing a weak unit <em>e</em> and let <em>Ω</em> be the collection of all Riesz homomorphisms <em>ø</em> from <em>E</em> onto ℝ such that <em>ø</em>(<em>e</em>)=1. The Gelfand mapping <em>G</em> :<em>x</em>→<em>x</em>^ on <em>E</em> is defined by <em>x</em>^(<em>ø</em>) = <em>ø</em>(<em>x</em>) for all <em>ø</em>∈Ω. We endow Ω with the topology induced by <em>E</em> (i.e., the weakest topology such that each <em>x</em>^ is continuous on <em>Ω</em>). The principal ideal in <em>E</em> generated by <em>e</em> is denoted by <em>I<sub>d</sub></em>(<em>e</em>). The main theorem in this paper says that the following statements (A) and (B) are equivalent.</p><ul><li><span>(A)</span><span><p>There exists a completely regular space <em>X</em> such that <em>E</em> is Riesz isomorphic to the space <em>C</em>(<em>X</em>) of all real continuous functions on <em>X</em>.</p></span></li><li><span>(B)</span><span><p>The following conditions for the Riesz space <em>E</em> hold: (1) <em>E</em> is Archimedean and has a weak unit <em>e</em>; (2) <em>Ω</em> separates the points of <em>E</em>; (3) <em>E</em> is uniformly complete; (4) <em>G</em>(<em>I<sub>d</sub></em>(<em>e</em>)) is norm dense in the space <em>C<sub>b</sub></em>(<em>Ω</em>) of all real bounded continuous functions on <em>Ω</em>; (5) <em>E</em> is 2-universally complete with carrier space <em>Ω</em>.</p></span></li></ul><p>Some other conditions are mentioned and an example is given to show that condition (5) is necessary for (B) ⇒(A).</p></div>\",\"PeriodicalId\":100664,\"journal\":{\"name\":\"Indagationes Mathematicae (Proceedings)\",\"volume\":\"92 1\",\"pages\":\"Pages 87-95\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1385-7258(89)80019-8\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae (Proceedings)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1385725889800198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae (Proceedings)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385725889800198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

设E是一个具有弱单位E的阿基米德Riesz空间,设Ω是从E到l的所有Riesz同态的集合,且ø(E)=1。对于所有ø∈Ω, Gelfand映射G:x→x^ on E定义为x^(ø) = ø(x)。我们赋予Ω由E引起的拓扑(即,使每个x^在Ω上连续的最弱拓扑)。由E生成的E中的主理想用Id(E)表示。本文的主要定理表明下列表述(A)与(B)是等价的:(A)存在一个完全正则空间X,使得E与X上所有实连续函数的空间C(X)是Riesz同构的(B) Riesz空间E成立下列条件:(1)E是阿基米德的,且有一个弱单位E;(2) Ω将E点分开;(3) E均匀完备;(4)在Ω上所有实数有界连续函数的Cb(Ω)空间中G(Id(e))是范数密集的;(5) E是2-普遍完备的载流子空间Ω。文中还提到了其他一些条件,并给出了一个例子来说明条件(5)对于(B)⇒(A)是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A characterization of Riesz spaces which are Riesz isomorphic to C(X) for some completely regular space X

Let E be an Archimedean Riesz space possessing a weak unit e and let Ω be the collection of all Riesz homomorphisms ø from E onto ℝ such that ø(e)=1. The Gelfand mapping G :xx^ on E is defined by x^(ø) = ø(x) for all ø∈Ω. We endow Ω with the topology induced by E (i.e., the weakest topology such that each x^ is continuous on Ω). The principal ideal in E generated by e is denoted by Id(e). The main theorem in this paper says that the following statements (A) and (B) are equivalent.

  • (A)

    There exists a completely regular space X such that E is Riesz isomorphic to the space C(X) of all real continuous functions on X.

  • (B)

    The following conditions for the Riesz space E hold: (1) E is Archimedean and has a weak unit e; (2) Ω separates the points of E; (3) E is uniformly complete; (4) G(Id(e)) is norm dense in the space Cb(Ω) of all real bounded continuous functions on Ω; (5) E is 2-universally complete with carrier space Ω.

Some other conditions are mentioned and an example is given to show that condition (5) is necessary for (B) ⇒(A).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信