{"title":"放线菌培养上清液对金黄色念珠菌生物膜形成和毒力表达的影响。","authors":"Kenshi Yamane, Mamiko Niki, Taishi Tsubouchi, Tetsuya Watanabe, Kazuhisa Asai, Ken-Ichi Oinuma, Arata Sakiyama, Chaogetu Saren, Yuki Matsumoto, Koichi Makimura, Yukihiro Kaneko, Tomoya Kawaguchi","doi":"10.3314/mmj.22-00026","DOIUrl":null,"url":null,"abstract":"<p><p>The multidrug-resistant pathogen Candida auris is characterized by its aggregation under certain conditions, which affects its biofilm formation, drug susceptibility, and pathogenicity. Although the innate tendency to aggregate depends on the strain, the mechanism regulating C. auris aggregation remains unclear. We found that the culture supernatant from one of the 95 Actinomyces strains isolated from a deep-sea environment (IMAs2016D-66) inhibited C. auris aggregation. The cells grown in the presence of IMAs2016D-66 exhibited reduced hydrophobicity, biofilm formation, and enhanced proteolytic activity. In addition, the efflux pump activity of the fluconazole-resistant C. auris strain LSEM 3673 was stimulated by IMAs2016D-66, whereas no significant change was observed in the fluconazole-susceptible strain LSEM 0643. As the relationship between aggregative tendency and virulence in C. auris is still unclear, IMAs2016D-66 can serve as a tool for investigating regulatory mechanisms of phenotype switching and virulence expression of C. auris. Understanding of phenotype switching may help us not only to understand the pathogenicity of C. auris, but also to design new drugs that target the molecules regulating virulence factors.</p>","PeriodicalId":18325,"journal":{"name":"Medical mycology journal","volume":"64 1","pages":"7-17"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Culture Supernatant from an Actinomycete sp. Affects Biofilm Formation and Virulence Expression of Candida auris.\",\"authors\":\"Kenshi Yamane, Mamiko Niki, Taishi Tsubouchi, Tetsuya Watanabe, Kazuhisa Asai, Ken-Ichi Oinuma, Arata Sakiyama, Chaogetu Saren, Yuki Matsumoto, Koichi Makimura, Yukihiro Kaneko, Tomoya Kawaguchi\",\"doi\":\"10.3314/mmj.22-00026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The multidrug-resistant pathogen Candida auris is characterized by its aggregation under certain conditions, which affects its biofilm formation, drug susceptibility, and pathogenicity. Although the innate tendency to aggregate depends on the strain, the mechanism regulating C. auris aggregation remains unclear. We found that the culture supernatant from one of the 95 Actinomyces strains isolated from a deep-sea environment (IMAs2016D-66) inhibited C. auris aggregation. The cells grown in the presence of IMAs2016D-66 exhibited reduced hydrophobicity, biofilm formation, and enhanced proteolytic activity. In addition, the efflux pump activity of the fluconazole-resistant C. auris strain LSEM 3673 was stimulated by IMAs2016D-66, whereas no significant change was observed in the fluconazole-susceptible strain LSEM 0643. As the relationship between aggregative tendency and virulence in C. auris is still unclear, IMAs2016D-66 can serve as a tool for investigating regulatory mechanisms of phenotype switching and virulence expression of C. auris. Understanding of phenotype switching may help us not only to understand the pathogenicity of C. auris, but also to design new drugs that target the molecules regulating virulence factors.</p>\",\"PeriodicalId\":18325,\"journal\":{\"name\":\"Medical mycology journal\",\"volume\":\"64 1\",\"pages\":\"7-17\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical mycology journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3314/mmj.22-00026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical mycology journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3314/mmj.22-00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MYCOLOGY","Score":null,"Total":0}
A Culture Supernatant from an Actinomycete sp. Affects Biofilm Formation and Virulence Expression of Candida auris.
The multidrug-resistant pathogen Candida auris is characterized by its aggregation under certain conditions, which affects its biofilm formation, drug susceptibility, and pathogenicity. Although the innate tendency to aggregate depends on the strain, the mechanism regulating C. auris aggregation remains unclear. We found that the culture supernatant from one of the 95 Actinomyces strains isolated from a deep-sea environment (IMAs2016D-66) inhibited C. auris aggregation. The cells grown in the presence of IMAs2016D-66 exhibited reduced hydrophobicity, biofilm formation, and enhanced proteolytic activity. In addition, the efflux pump activity of the fluconazole-resistant C. auris strain LSEM 3673 was stimulated by IMAs2016D-66, whereas no significant change was observed in the fluconazole-susceptible strain LSEM 0643. As the relationship between aggregative tendency and virulence in C. auris is still unclear, IMAs2016D-66 can serve as a tool for investigating regulatory mechanisms of phenotype switching and virulence expression of C. auris. Understanding of phenotype switching may help us not only to understand the pathogenicity of C. auris, but also to design new drugs that target the molecules regulating virulence factors.
期刊介绍:
The Medical Mycology Journal is published by and is the official organ of the Japanese Society for Medical Mycology. The Journal publishes original papers, reviews, and brief reports on topics related to medical and veterinary mycology.