厚栅氧化物外源击穿-中性氢原子的潜在作用

Kin P Cheung
{"title":"厚栅氧化物外源击穿-中性氢原子的潜在作用","authors":"Kin P Cheung","doi":"10.1016/j.pedc.2022.100024","DOIUrl":null,"url":null,"abstract":"<div><p>Power electronics is currently a hot topic due to its important role in fighting climate change. Gate oxide breakdown is the Achilles heel of power devices, and it is well known that extrinsic breakdown is the chief concern. However, the root cause of extrinsic breakdown is poorly understood. Recently, a “lucky defect” model was introduced to explain extrinsic breakdown beyond the traditional “local thinning” model. In this work, the “lucky defect” model is further developed to allow it to examine the responsible defect's energy distribution. It is found that only defects with energy 1.5 eV ± 0.3 eV above the substrate conduction band can produce the breakdown distributions commonly reported. Few studied defects can satisfy this requirement. An exception is the neutral hydrogen atom, and its known properties are consistent with experimental results in the literature. If confirmed, this has important implication on how to remedy extrinsic breakdown.</p></div>","PeriodicalId":74483,"journal":{"name":"Power electronic devices and components","volume":"4 ","pages":"Article 100024"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9833270/pdf/nihms-1857437.pdf","citationCount":"0","resultStr":"{\"title\":\"Thick gate oxide extrinsic breakdown – The potential role of neutral hydrogen atom\",\"authors\":\"Kin P Cheung\",\"doi\":\"10.1016/j.pedc.2022.100024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Power electronics is currently a hot topic due to its important role in fighting climate change. Gate oxide breakdown is the Achilles heel of power devices, and it is well known that extrinsic breakdown is the chief concern. However, the root cause of extrinsic breakdown is poorly understood. Recently, a “lucky defect” model was introduced to explain extrinsic breakdown beyond the traditional “local thinning” model. In this work, the “lucky defect” model is further developed to allow it to examine the responsible defect's energy distribution. It is found that only defects with energy 1.5 eV ± 0.3 eV above the substrate conduction band can produce the breakdown distributions commonly reported. Few studied defects can satisfy this requirement. An exception is the neutral hydrogen atom, and its known properties are consistent with experimental results in the literature. If confirmed, this has important implication on how to remedy extrinsic breakdown.</p></div>\",\"PeriodicalId\":74483,\"journal\":{\"name\":\"Power electronic devices and components\",\"volume\":\"4 \",\"pages\":\"Article 100024\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9833270/pdf/nihms-1857437.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Power electronic devices and components\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772370422000219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Power electronic devices and components","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772370422000219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电力电子因其在应对气候变化方面的重要作用而成为当前的热门话题。栅极氧化物击穿是功率器件的致命弱点,众所周知,外部击穿是主要问题。然而,人们对外在崩溃的根本原因知之甚少。最近,在传统的“局部细化”模型之外,引入了一个“幸运缺陷”模型来解释外部击穿。在这项工作中,“幸运缺陷”模型得到了进一步的发展,使其能够检查责任缺陷的能量分布。发现只有在衬底导带以上能量为1.5eV±0.3eV的缺陷才能产生通常报道的击穿分布。很少有研究的缺陷能够满足这一要求。一个例外是中性氢原子,它的已知性质与文献中的实验结果一致。如果得到证实,这对如何补救外在崩溃具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Thick gate oxide extrinsic breakdown – The potential role of neutral hydrogen atom

Thick gate oxide extrinsic breakdown – The potential role of neutral hydrogen atom

Power electronics is currently a hot topic due to its important role in fighting climate change. Gate oxide breakdown is the Achilles heel of power devices, and it is well known that extrinsic breakdown is the chief concern. However, the root cause of extrinsic breakdown is poorly understood. Recently, a “lucky defect” model was introduced to explain extrinsic breakdown beyond the traditional “local thinning” model. In this work, the “lucky defect” model is further developed to allow it to examine the responsible defect's energy distribution. It is found that only defects with energy 1.5 eV ± 0.3 eV above the substrate conduction band can produce the breakdown distributions commonly reported. Few studied defects can satisfy this requirement. An exception is the neutral hydrogen atom, and its known properties are consistent with experimental results in the literature. If confirmed, this has important implication on how to remedy extrinsic breakdown.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Power electronic devices and components
Power electronic devices and components Hardware and Architecture, Electrical and Electronic Engineering, Atomic and Molecular Physics, and Optics, Safety, Risk, Reliability and Quality
CiteScore
2.00
自引率
0.00%
发文量
0
审稿时长
80 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信