{"title":"药物引起的赌博障碍:流行病学、神经生物学和管理。","authors":"Mirjam Wolfschlag, Anders Håkansson","doi":"10.1007/s40290-022-00453-9","DOIUrl":null,"url":null,"abstract":"<p><p>Problematic gambling has been suggested to be a possible consequence of dopaminergic medications used mainly in neurological conditions, i.e. pramipexole and ropinirole, and possibly by one antipsychotic compound, aripiprazole. Patients with Parkinson's disease, restless legs syndrome and other conditions potentially treated with dopamine agonists, as well as patients treated for psychotic disorders, are vulnerable patient groups with theoretically increased risk of developing gambling disorder (GD), for example due to higher rates of mental ill-health in these groups. The aim of the present paper is to review the epidemiological, clinical, and neurobiological evidence of the association between dopaminergic medications and GD, and to describe risk groups and treatment options. The neurobiology of GD involves the reward and reinforcement system, based mainly on mesocorticolimbic dopamine projections, with the nucleus accumbens being a crucial area for developing addictions to substances and behaviors. The addictive properties of gambling can perhaps be explained by the reward uncertainty that activates dopamine signaling in a pathological manner. Since reward-related learning is mediated by dopamine, it can be altered by dopaminergic medications, possibly leading to increased gambling behavior and a decreased impulse control. A causal relationship between the medications and GD seems likely, but the molecular mechanisms behind this association have not been fully described yet. More research is needed in order to fully outline the clinical picture of GD developing in patient groups with dopaminergic medications, and data are needed on the differentiation of risk in different compounds. In addition, very few interventional studies are available on the management of GD induced by dopaminergic medications. While GD overall can be treated, there is need for treatment studies testing the effectiveness of tapering of the medication or other gambling-specific treatment modalities in these patient groups.</p>","PeriodicalId":19778,"journal":{"name":"Pharmaceutical Medicine","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f7/cc/40290_2022_Article_453.PMC9825131.pdf","citationCount":"3","resultStr":"{\"title\":\"Drug-Induced Gambling Disorder: Epidemiology, Neurobiology, and Management.\",\"authors\":\"Mirjam Wolfschlag, Anders Håkansson\",\"doi\":\"10.1007/s40290-022-00453-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Problematic gambling has been suggested to be a possible consequence of dopaminergic medications used mainly in neurological conditions, i.e. pramipexole and ropinirole, and possibly by one antipsychotic compound, aripiprazole. Patients with Parkinson's disease, restless legs syndrome and other conditions potentially treated with dopamine agonists, as well as patients treated for psychotic disorders, are vulnerable patient groups with theoretically increased risk of developing gambling disorder (GD), for example due to higher rates of mental ill-health in these groups. The aim of the present paper is to review the epidemiological, clinical, and neurobiological evidence of the association between dopaminergic medications and GD, and to describe risk groups and treatment options. The neurobiology of GD involves the reward and reinforcement system, based mainly on mesocorticolimbic dopamine projections, with the nucleus accumbens being a crucial area for developing addictions to substances and behaviors. The addictive properties of gambling can perhaps be explained by the reward uncertainty that activates dopamine signaling in a pathological manner. Since reward-related learning is mediated by dopamine, it can be altered by dopaminergic medications, possibly leading to increased gambling behavior and a decreased impulse control. A causal relationship between the medications and GD seems likely, but the molecular mechanisms behind this association have not been fully described yet. More research is needed in order to fully outline the clinical picture of GD developing in patient groups with dopaminergic medications, and data are needed on the differentiation of risk in different compounds. In addition, very few interventional studies are available on the management of GD induced by dopaminergic medications. While GD overall can be treated, there is need for treatment studies testing the effectiveness of tapering of the medication or other gambling-specific treatment modalities in these patient groups.</p>\",\"PeriodicalId\":19778,\"journal\":{\"name\":\"Pharmaceutical Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f7/cc/40290_2022_Article_453.PMC9825131.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40290-022-00453-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40290-022-00453-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Drug-Induced Gambling Disorder: Epidemiology, Neurobiology, and Management.
Problematic gambling has been suggested to be a possible consequence of dopaminergic medications used mainly in neurological conditions, i.e. pramipexole and ropinirole, and possibly by one antipsychotic compound, aripiprazole. Patients with Parkinson's disease, restless legs syndrome and other conditions potentially treated with dopamine agonists, as well as patients treated for psychotic disorders, are vulnerable patient groups with theoretically increased risk of developing gambling disorder (GD), for example due to higher rates of mental ill-health in these groups. The aim of the present paper is to review the epidemiological, clinical, and neurobiological evidence of the association between dopaminergic medications and GD, and to describe risk groups and treatment options. The neurobiology of GD involves the reward and reinforcement system, based mainly on mesocorticolimbic dopamine projections, with the nucleus accumbens being a crucial area for developing addictions to substances and behaviors. The addictive properties of gambling can perhaps be explained by the reward uncertainty that activates dopamine signaling in a pathological manner. Since reward-related learning is mediated by dopamine, it can be altered by dopaminergic medications, possibly leading to increased gambling behavior and a decreased impulse control. A causal relationship between the medications and GD seems likely, but the molecular mechanisms behind this association have not been fully described yet. More research is needed in order to fully outline the clinical picture of GD developing in patient groups with dopaminergic medications, and data are needed on the differentiation of risk in different compounds. In addition, very few interventional studies are available on the management of GD induced by dopaminergic medications. While GD overall can be treated, there is need for treatment studies testing the effectiveness of tapering of the medication or other gambling-specific treatment modalities in these patient groups.
期刊介绍:
Pharmaceutical Medicine is a specialist discipline concerned with medical aspects of the discovery, development, evaluation, registration, regulation, monitoring, marketing, distribution and pricing of medicines, drug-device and drug-diagnostic combinations. The Journal disseminates information to support the community of professionals working in these highly inter-related functions. Key areas include translational medicine, clinical trial design, pharmacovigilance, clinical toxicology, drug regulation, clinical pharmacology, biostatistics and pharmacoeconomics. The Journal includes:Overviews of contentious or emerging issues.Comprehensive narrative reviews that provide an authoritative source of information on topical issues.Systematic reviews that collate empirical evidence to answer a specific research question, using explicit, systematic methods as outlined by PRISMA statement.Original research articles reporting the results of well-designed studies with a strong link to wider areas of clinical research.Additional digital features (including animated abstracts, video abstracts, slide decks, audio slides, instructional videos, infographics, podcasts and animations) can be published with articles; these are designed to increase the visibility, readership and educational value of the journal’s content. In addition, articles published in Pharmaceutical Medicine may be accompanied by plain language summaries to assist readers who have some knowledge of, but not in-depth expertise in, the area to understand important medical advances.All manuscripts are subject to peer review by international experts. Letters to the Editor are welcomed and will be considered for publication.