Pablo Pánico, Patricia Ostrosky-Wegman, Ana María Salazar
{"title":"COVID-19在诱导DNA损伤中的潜在作用","authors":"Pablo Pánico, Patricia Ostrosky-Wegman, Ana María Salazar","doi":"10.1016/j.mrrev.2022.108411","DOIUrl":null,"url":null,"abstract":"<div><p>The coronavirus disease-2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is challenging global health and economic systems. In some individuals, COVID-19 can cause a wide array of symptoms, affecting several organs, such as the lungs, heart, bowels, kidneys and brain, causing multiorgan failure, sepsis and death. These effects are related in part to direct viral infection of these organs, immunological deregulation, a hypercoagulatory state and the potential for development of cytokine storm syndrome. Since the appearance of COVID-19 is recent, the long-term effects on the health of recovered patients remain unknown. In this review, we focused on current evidence of the mechanisms of DNA damage mediated by coronaviruses. Data supports that these viruses can induce DNA damage, genomic instability, and cell cycle deregulation during their replication in mammalian cells. Since the induction of DNA damage and aberrant DNA repair mechanisms are related to the development of chronic diseases such as cancer, diabetes, neurodegenerative disorders, and atherosclerosis, it will be important to address similar effects and outcomes in recovered COVID-19 patients.</p></div>","PeriodicalId":49789,"journal":{"name":"Mutation Research-Reviews in Mutation Research","volume":"789 ","pages":"Article 108411"},"PeriodicalIF":6.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8767986/pdf/","citationCount":"15","resultStr":"{\"title\":\"The potential role of COVID-19 in the induction of DNA damage\",\"authors\":\"Pablo Pánico, Patricia Ostrosky-Wegman, Ana María Salazar\",\"doi\":\"10.1016/j.mrrev.2022.108411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The coronavirus disease-2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is challenging global health and economic systems. In some individuals, COVID-19 can cause a wide array of symptoms, affecting several organs, such as the lungs, heart, bowels, kidneys and brain, causing multiorgan failure, sepsis and death. These effects are related in part to direct viral infection of these organs, immunological deregulation, a hypercoagulatory state and the potential for development of cytokine storm syndrome. Since the appearance of COVID-19 is recent, the long-term effects on the health of recovered patients remain unknown. In this review, we focused on current evidence of the mechanisms of DNA damage mediated by coronaviruses. Data supports that these viruses can induce DNA damage, genomic instability, and cell cycle deregulation during their replication in mammalian cells. Since the induction of DNA damage and aberrant DNA repair mechanisms are related to the development of chronic diseases such as cancer, diabetes, neurodegenerative disorders, and atherosclerosis, it will be important to address similar effects and outcomes in recovered COVID-19 patients.</p></div>\",\"PeriodicalId\":49789,\"journal\":{\"name\":\"Mutation Research-Reviews in Mutation Research\",\"volume\":\"789 \",\"pages\":\"Article 108411\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8767986/pdf/\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation Research-Reviews in Mutation Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1383574222000011\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research-Reviews in Mutation Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383574222000011","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
The potential role of COVID-19 in the induction of DNA damage
The coronavirus disease-2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is challenging global health and economic systems. In some individuals, COVID-19 can cause a wide array of symptoms, affecting several organs, such as the lungs, heart, bowels, kidneys and brain, causing multiorgan failure, sepsis and death. These effects are related in part to direct viral infection of these organs, immunological deregulation, a hypercoagulatory state and the potential for development of cytokine storm syndrome. Since the appearance of COVID-19 is recent, the long-term effects on the health of recovered patients remain unknown. In this review, we focused on current evidence of the mechanisms of DNA damage mediated by coronaviruses. Data supports that these viruses can induce DNA damage, genomic instability, and cell cycle deregulation during their replication in mammalian cells. Since the induction of DNA damage and aberrant DNA repair mechanisms are related to the development of chronic diseases such as cancer, diabetes, neurodegenerative disorders, and atherosclerosis, it will be important to address similar effects and outcomes in recovered COVID-19 patients.
期刊介绍:
The subject areas of Reviews in Mutation Research encompass the entire spectrum of the science of mutation research and its applications, with particular emphasis on the relationship between mutation and disease. Thus this section will cover advances in human genome research (including evolving technologies for mutation detection and functional genomics) with applications in clinical genetics, gene therapy and health risk assessment for environmental agents of concern.