Ana Maria Dos Santos, Fernanda Matias Albuini, Géssica Cabral Barros, Olinto Liparini Pereira, Wendel Batista da Silveira, Luciano Gomes Fietto
{"title":"马氏克鲁维菌主要分泌蛋白的鉴定及其可能的拮抗作用。","authors":"Ana Maria Dos Santos, Fernanda Matias Albuini, Géssica Cabral Barros, Olinto Liparini Pereira, Wendel Batista da Silveira, Luciano Gomes Fietto","doi":"10.1093/femsyr/foad007","DOIUrl":null,"url":null,"abstract":"<p><p>Lytic enzymes secreted by Kluyveromyces marxianus can lyse Saccharomyces cerevisiae cells. Their ability to hydrolyze yeast cell walls can be used in biotechnological applications, such as the production of glucans and protoplasts, as well as a biological control agent against plant pathogenic fungi. Herein, 27 proteins secreted by K. marxianus were identified by mass spectrometry analyses. Importantly, 14 out of the 27 proteins were classified as hydrolases. Indeed, the enzyme extract secreted by K. marxianus caused damage to S. cerevisiae cells and reduced yeast cell viability. Moreover, K marxianus inhibited spore germination and mycelial growth of the phytopathogenic fungus Botrytis cinerea in simultaneous cocultivation assays. We suggest that this inhibition may be partially related to the yeast's ability to secrete lytic enzymes. Consistent with the in vitro antagonistic tests, K. marxianus was able to protect strawberry fruits inoculated with B. cinerea. Therefore, these findings suggest that K. marxianus possesses potential as a biocontrol agent against strawberry gray mold during the postharvest stage and may also have potential against other phytopathogenic fungi by means of its lytic enzymatic arsenal.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":"23 ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of the main proteins secreted by Kluyveromyces marxianus and their possible roles in antagonistic activity against fungi.\",\"authors\":\"Ana Maria Dos Santos, Fernanda Matias Albuini, Géssica Cabral Barros, Olinto Liparini Pereira, Wendel Batista da Silveira, Luciano Gomes Fietto\",\"doi\":\"10.1093/femsyr/foad007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lytic enzymes secreted by Kluyveromyces marxianus can lyse Saccharomyces cerevisiae cells. Their ability to hydrolyze yeast cell walls can be used in biotechnological applications, such as the production of glucans and protoplasts, as well as a biological control agent against plant pathogenic fungi. Herein, 27 proteins secreted by K. marxianus were identified by mass spectrometry analyses. Importantly, 14 out of the 27 proteins were classified as hydrolases. Indeed, the enzyme extract secreted by K. marxianus caused damage to S. cerevisiae cells and reduced yeast cell viability. Moreover, K marxianus inhibited spore germination and mycelial growth of the phytopathogenic fungus Botrytis cinerea in simultaneous cocultivation assays. We suggest that this inhibition may be partially related to the yeast's ability to secrete lytic enzymes. Consistent with the in vitro antagonistic tests, K. marxianus was able to protect strawberry fruits inoculated with B. cinerea. Therefore, these findings suggest that K. marxianus possesses potential as a biocontrol agent against strawberry gray mold during the postharvest stage and may also have potential against other phytopathogenic fungi by means of its lytic enzymatic arsenal.</p>\",\"PeriodicalId\":12290,\"journal\":{\"name\":\"FEMS yeast research\",\"volume\":\"23 \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS yeast research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsyr/foad007\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS yeast research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsyr/foad007","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Identification of the main proteins secreted by Kluyveromyces marxianus and their possible roles in antagonistic activity against fungi.
Lytic enzymes secreted by Kluyveromyces marxianus can lyse Saccharomyces cerevisiae cells. Their ability to hydrolyze yeast cell walls can be used in biotechnological applications, such as the production of glucans and protoplasts, as well as a biological control agent against plant pathogenic fungi. Herein, 27 proteins secreted by K. marxianus were identified by mass spectrometry analyses. Importantly, 14 out of the 27 proteins were classified as hydrolases. Indeed, the enzyme extract secreted by K. marxianus caused damage to S. cerevisiae cells and reduced yeast cell viability. Moreover, K marxianus inhibited spore germination and mycelial growth of the phytopathogenic fungus Botrytis cinerea in simultaneous cocultivation assays. We suggest that this inhibition may be partially related to the yeast's ability to secrete lytic enzymes. Consistent with the in vitro antagonistic tests, K. marxianus was able to protect strawberry fruits inoculated with B. cinerea. Therefore, these findings suggest that K. marxianus possesses potential as a biocontrol agent against strawberry gray mold during the postharvest stage and may also have potential against other phytopathogenic fungi by means of its lytic enzymatic arsenal.
期刊介绍:
FEMS Yeast Research offers efficient publication of high-quality original Research Articles, Mini-reviews, Letters to the Editor, Perspectives and Commentaries that express current opinions. The journal will select for publication only those manuscripts deemed to be of major relevance to the field and generally will not consider articles that are largely descriptive without insights on underlying mechanism or biology. Submissions on any yeast species are welcome provided they report results within the scope outlined below and are of significance to the yeast field.