Philipp J Kremer, Damian Brzyski, Małgorzata Bogdan, Sandra Paterlini
{"title":"稀疏索引通过排序的1 -范数克隆。","authors":"Philipp J Kremer, Damian Brzyski, Małgorzata Bogdan, Sandra Paterlini","doi":"10.1080/14697688.2021.1962539","DOIUrl":null,"url":null,"abstract":"<p><p>Index tracking and hedge fund replication aim at cloning the return time series properties of a given benchmark, by either using only a subset of its original constituents or by a set of risk factors. In this paper, we propose a model that relies on the <i>Sorted ℓ</i> <sub>1</sub> <i>Penalized Estimator</i>, called SLOPE, for index tracking and hedge fund replication. We show that SLOPE is capable of not only providing sparsity, but also to form groups among assets depending on their partial correlation with the index or the hedge fund return times series. The grouping structure can then be exploited to create individual investment strategies that allow building portfolios with a smaller number of active positions, but still comparable tracking properties. Considering equity index data and hedge fund returns, we discuss the real-world properties of SLOPE based approaches with respect to state-of-the art approaches.</p>","PeriodicalId":20747,"journal":{"name":"Quantitative Finance","volume":"22 2","pages":"349-366"},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9031478/pdf/nihms-1760168.pdf","citationCount":"11","resultStr":"{\"title\":\"Sparse Index Clones via the sorted <i>ℓ</i> <sub>1</sub> - Norm.\",\"authors\":\"Philipp J Kremer, Damian Brzyski, Małgorzata Bogdan, Sandra Paterlini\",\"doi\":\"10.1080/14697688.2021.1962539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Index tracking and hedge fund replication aim at cloning the return time series properties of a given benchmark, by either using only a subset of its original constituents or by a set of risk factors. In this paper, we propose a model that relies on the <i>Sorted ℓ</i> <sub>1</sub> <i>Penalized Estimator</i>, called SLOPE, for index tracking and hedge fund replication. We show that SLOPE is capable of not only providing sparsity, but also to form groups among assets depending on their partial correlation with the index or the hedge fund return times series. The grouping structure can then be exploited to create individual investment strategies that allow building portfolios with a smaller number of active positions, but still comparable tracking properties. Considering equity index data and hedge fund returns, we discuss the real-world properties of SLOPE based approaches with respect to state-of-the art approaches.</p>\",\"PeriodicalId\":20747,\"journal\":{\"name\":\"Quantitative Finance\",\"volume\":\"22 2\",\"pages\":\"349-366\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9031478/pdf/nihms-1760168.pdf\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/14697688.2021.1962539\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Finance","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/14697688.2021.1962539","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Index tracking and hedge fund replication aim at cloning the return time series properties of a given benchmark, by either using only a subset of its original constituents or by a set of risk factors. In this paper, we propose a model that relies on the Sorted ℓ1Penalized Estimator, called SLOPE, for index tracking and hedge fund replication. We show that SLOPE is capable of not only providing sparsity, but also to form groups among assets depending on their partial correlation with the index or the hedge fund return times series. The grouping structure can then be exploited to create individual investment strategies that allow building portfolios with a smaller number of active positions, but still comparable tracking properties. Considering equity index data and hedge fund returns, we discuss the real-world properties of SLOPE based approaches with respect to state-of-the art approaches.
期刊介绍:
The frontiers of finance are shifting rapidly, driven in part by the increasing use of quantitative methods in the field. Quantitative Finance welcomes original research articles that reflect the dynamism of this area. The journal provides an interdisciplinary forum for presenting both theoretical and empirical approaches and offers rapid publication of original new work with high standards of quality. The readership is broad, embracing researchers and practitioners across a range of specialisms and within a variety of organizations. All articles should aim to be of interest to this broad readership.