利用纳米孔测序进行基于甲基化的脑肿瘤分类。

IF 4 2区 医学 Q1 CLINICAL NEUROLOGY
Luis P Kuschel, Jürgen Hench, Stephan Frank, Ivana Bratic Hench, Elodie Girard, Maud Blanluet, Julien Masliah-Planchon, Martin Misch, Julia Onken, Marcus Czabanka, Dongsheng Yuan, Sören Lukassen, Philipp Karau, Naveed Ishaque, Elisabeth G Hain, Frank Heppner, Ahmed Idbaih, Nikolaus Behr, Christoph Harms, David Capper, Philipp Euskirchen
{"title":"利用纳米孔测序进行基于甲基化的脑肿瘤分类。","authors":"Luis P Kuschel,&nbsp;Jürgen Hench,&nbsp;Stephan Frank,&nbsp;Ivana Bratic Hench,&nbsp;Elodie Girard,&nbsp;Maud Blanluet,&nbsp;Julien Masliah-Planchon,&nbsp;Martin Misch,&nbsp;Julia Onken,&nbsp;Marcus Czabanka,&nbsp;Dongsheng Yuan,&nbsp;Sören Lukassen,&nbsp;Philipp Karau,&nbsp;Naveed Ishaque,&nbsp;Elisabeth G Hain,&nbsp;Frank Heppner,&nbsp;Ahmed Idbaih,&nbsp;Nikolaus Behr,&nbsp;Christoph Harms,&nbsp;David Capper,&nbsp;Philipp Euskirchen","doi":"10.1111/nan.12856","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>DNA methylation-based classification of cancer provides a comprehensive molecular approach to diagnose tumours. In fact, DNA methylation profiling of human brain tumours already profoundly impacts clinical neuro-oncology. However, current implementation using hybridisation microarrays is time consuming and costly. We recently reported on shallow nanopore whole-genome sequencing for rapid and cost-effective generation of genome-wide 5-methylcytosine profiles as input to supervised classification. Here, we demonstrate that this approach allows us to discriminate a wide spectrum of primary brain tumours.</p><p><strong>Results: </strong>Using public reference data of 82 distinct tumour entities, we performed nanopore genome sequencing on 382 tissue samples covering 46 brain tumour (sub)types. Using bootstrap sampling in a cohort of 55 cases, we found that a minimum set of 1000 random CpG features is sufficient for high-confidence classification by ad hoc random forests. We implemented score recalibration as a confidence measure for interpretation in a clinical context and empirically determined a platform-specific threshold in a randomly sampled discovery cohort (N = 185). Applying this cut-off to an independent validation series (n = 184) yielded 148 classifiable cases (sensitivity 80.4%) and demonstrated 100% specificity. Cross-lab validation demonstrated robustness with concordant results across four laboratories in 10/11 (90.9%) cases. In a prospective benchmarking (N = 15), the median time to results was 21.1 h.</p><p><strong>Conclusions: </strong>In conclusion, nanopore sequencing allows robust and rapid methylation-based classification across the full spectrum of brain tumours. Platform-specific confidence scores facilitate clinical implementation for which prospective evaluation is warranted and ongoing.</p>","PeriodicalId":19151,"journal":{"name":"Neuropathology and Applied Neurobiology","volume":"49 1","pages":"e12856"},"PeriodicalIF":4.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust methylation-based classification of brain tumours using nanopore sequencing.\",\"authors\":\"Luis P Kuschel,&nbsp;Jürgen Hench,&nbsp;Stephan Frank,&nbsp;Ivana Bratic Hench,&nbsp;Elodie Girard,&nbsp;Maud Blanluet,&nbsp;Julien Masliah-Planchon,&nbsp;Martin Misch,&nbsp;Julia Onken,&nbsp;Marcus Czabanka,&nbsp;Dongsheng Yuan,&nbsp;Sören Lukassen,&nbsp;Philipp Karau,&nbsp;Naveed Ishaque,&nbsp;Elisabeth G Hain,&nbsp;Frank Heppner,&nbsp;Ahmed Idbaih,&nbsp;Nikolaus Behr,&nbsp;Christoph Harms,&nbsp;David Capper,&nbsp;Philipp Euskirchen\",\"doi\":\"10.1111/nan.12856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>DNA methylation-based classification of cancer provides a comprehensive molecular approach to diagnose tumours. In fact, DNA methylation profiling of human brain tumours already profoundly impacts clinical neuro-oncology. However, current implementation using hybridisation microarrays is time consuming and costly. We recently reported on shallow nanopore whole-genome sequencing for rapid and cost-effective generation of genome-wide 5-methylcytosine profiles as input to supervised classification. Here, we demonstrate that this approach allows us to discriminate a wide spectrum of primary brain tumours.</p><p><strong>Results: </strong>Using public reference data of 82 distinct tumour entities, we performed nanopore genome sequencing on 382 tissue samples covering 46 brain tumour (sub)types. Using bootstrap sampling in a cohort of 55 cases, we found that a minimum set of 1000 random CpG features is sufficient for high-confidence classification by ad hoc random forests. We implemented score recalibration as a confidence measure for interpretation in a clinical context and empirically determined a platform-specific threshold in a randomly sampled discovery cohort (N = 185). Applying this cut-off to an independent validation series (n = 184) yielded 148 classifiable cases (sensitivity 80.4%) and demonstrated 100% specificity. Cross-lab validation demonstrated robustness with concordant results across four laboratories in 10/11 (90.9%) cases. In a prospective benchmarking (N = 15), the median time to results was 21.1 h.</p><p><strong>Conclusions: </strong>In conclusion, nanopore sequencing allows robust and rapid methylation-based classification across the full spectrum of brain tumours. Platform-specific confidence scores facilitate clinical implementation for which prospective evaluation is warranted and ongoing.</p>\",\"PeriodicalId\":19151,\"journal\":{\"name\":\"Neuropathology and Applied Neurobiology\",\"volume\":\"49 1\",\"pages\":\"e12856\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropathology and Applied Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/nan.12856\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropathology and Applied Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/nan.12856","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 2

摘要

背景:基于DNA甲基化的癌症分类为肿瘤诊断提供了一种全面的分子方法。事实上,人类脑肿瘤的DNA甲基化谱已经深刻地影响了临床神经肿瘤学。然而,目前使用杂交微阵列的实现既耗时又昂贵。我们最近报道了浅纳米孔全基因组测序,用于快速和经济高效地生成全基因组5-甲基胞嘧啶谱,作为监督分类的输入。在这里,我们证明了这种方法使我们能够区分广泛的原发性脑肿瘤。结果:利用82种不同肿瘤实体的公共参考数据,我们对46种脑肿瘤(亚)类型的382个组织样本进行了纳米孔基因组测序。在55个案例的队列中使用自举抽样,我们发现1000个随机CpG特征的最小集足以通过特设随机森林进行高置信度分类。我们实施了分数重新校准,作为临床背景下解释的置信度措施,并在随机抽样的发现队列(N = 185)中经验地确定了平台特定阈值。将该截止值应用于独立验证系列(n = 184),得到148例可分类病例(敏感性80.4%),并显示100%的特异性。跨实验室验证显示稳健性,10/11(90.9%)病例中四个实验室的结果一致。在前瞻性基准测试(N = 15)中,获得结果的中位时间为21.1小时。结论:总之,纳米孔测序可以在全谱脑肿瘤中实现稳健和快速的基于甲基化的分类。平台特异性置信度评分促进临床实施,前瞻性评估是有保证的和正在进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust methylation-based classification of brain tumours using nanopore sequencing.

Background: DNA methylation-based classification of cancer provides a comprehensive molecular approach to diagnose tumours. In fact, DNA methylation profiling of human brain tumours already profoundly impacts clinical neuro-oncology. However, current implementation using hybridisation microarrays is time consuming and costly. We recently reported on shallow nanopore whole-genome sequencing for rapid and cost-effective generation of genome-wide 5-methylcytosine profiles as input to supervised classification. Here, we demonstrate that this approach allows us to discriminate a wide spectrum of primary brain tumours.

Results: Using public reference data of 82 distinct tumour entities, we performed nanopore genome sequencing on 382 tissue samples covering 46 brain tumour (sub)types. Using bootstrap sampling in a cohort of 55 cases, we found that a minimum set of 1000 random CpG features is sufficient for high-confidence classification by ad hoc random forests. We implemented score recalibration as a confidence measure for interpretation in a clinical context and empirically determined a platform-specific threshold in a randomly sampled discovery cohort (N = 185). Applying this cut-off to an independent validation series (n = 184) yielded 148 classifiable cases (sensitivity 80.4%) and demonstrated 100% specificity. Cross-lab validation demonstrated robustness with concordant results across four laboratories in 10/11 (90.9%) cases. In a prospective benchmarking (N = 15), the median time to results was 21.1 h.

Conclusions: In conclusion, nanopore sequencing allows robust and rapid methylation-based classification across the full spectrum of brain tumours. Platform-specific confidence scores facilitate clinical implementation for which prospective evaluation is warranted and ongoing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.20
自引率
2.00%
发文量
87
审稿时长
6-12 weeks
期刊介绍: Neuropathology and Applied Neurobiology is an international journal for the publication of original papers, both clinical and experimental, on problems and pathological processes in neuropathology and muscle disease. Established in 1974, this reputable and well respected journal is an international journal sponsored by the British Neuropathological Society, one of the world leading societies for Neuropathology, pioneering research and scientific endeavour with a global membership base. Additionally members of the British Neuropathological Society get 50% off the cost of print colour on acceptance of their article.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信