{"title":"网格蛋白依赖性内吞途径的限制和挫折。","authors":"Julie Bruna-Gauchoux, Guillaume Montagnac","doi":"10.5802/crbiol.88","DOIUrl":null,"url":null,"abstract":"<p><p>Clathrin-dependent endocytosis is the major pathway for the entry of most surface receptors and their ligands. It is controlled by clathrin-coated structures that are endowed with the ability to cluster receptors and locally bend the plasma membrane, leading to the formation of receptor-containing vesicles budding into the cytoplasm. This canonical role of clathrin-coated structures has been repeatedly demonstrated to play a fundamental role in a wide range of aspects of cell physiology. However, it is now clearly established that the ability of clathrin-coated structures to bend the membrane can be disrupted. In addition to chemical or genetic alterations, many environmental conditions can physically prevent or slow membrane deformation and/or budding of clathrin-coated structures. The resulting frustrated endocytosis is not only a passive consequence but serves very specific and important cellular functions. Here we provide a historical perspective as well as a definition of frustrated endocytosis in the clathrin pathway before describing its causes and many functional consequences.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constraints and frustration in the clathrin-dependent endocytosis pathway.\",\"authors\":\"Julie Bruna-Gauchoux, Guillaume Montagnac\",\"doi\":\"10.5802/crbiol.88\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clathrin-dependent endocytosis is the major pathway for the entry of most surface receptors and their ligands. It is controlled by clathrin-coated structures that are endowed with the ability to cluster receptors and locally bend the plasma membrane, leading to the formation of receptor-containing vesicles budding into the cytoplasm. This canonical role of clathrin-coated structures has been repeatedly demonstrated to play a fundamental role in a wide range of aspects of cell physiology. However, it is now clearly established that the ability of clathrin-coated structures to bend the membrane can be disrupted. In addition to chemical or genetic alterations, many environmental conditions can physically prevent or slow membrane deformation and/or budding of clathrin-coated structures. The resulting frustrated endocytosis is not only a passive consequence but serves very specific and important cellular functions. Here we provide a historical perspective as well as a definition of frustrated endocytosis in the clathrin pathway before describing its causes and many functional consequences.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.5802/crbiol.88\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.5802/crbiol.88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Constraints and frustration in the clathrin-dependent endocytosis pathway.
Clathrin-dependent endocytosis is the major pathway for the entry of most surface receptors and their ligands. It is controlled by clathrin-coated structures that are endowed with the ability to cluster receptors and locally bend the plasma membrane, leading to the formation of receptor-containing vesicles budding into the cytoplasm. This canonical role of clathrin-coated structures has been repeatedly demonstrated to play a fundamental role in a wide range of aspects of cell physiology. However, it is now clearly established that the ability of clathrin-coated structures to bend the membrane can be disrupted. In addition to chemical or genetic alterations, many environmental conditions can physically prevent or slow membrane deformation and/or budding of clathrin-coated structures. The resulting frustrated endocytosis is not only a passive consequence but serves very specific and important cellular functions. Here we provide a historical perspective as well as a definition of frustrated endocytosis in the clathrin pathway before describing its causes and many functional consequences.