Angela Falciatore, Benjamin Bailleul, Alix Boulouis, Jean-Pierre Bouly, Sandrine Bujaldon, Soizic Cheminant-Navarro, Yves Choquet, Catherine de Vitry, Stephan Eberhard, Marianne Jaubert, Richard Kuras, Ingrid Lafontaine, Sophie Landier, Julien Selles, Olivier Vallon, Katia Wostrikoff
{"title":"光驱动过程:微藻功能生物多样性的关键参与者。","authors":"Angela Falciatore, Benjamin Bailleul, Alix Boulouis, Jean-Pierre Bouly, Sandrine Bujaldon, Soizic Cheminant-Navarro, Yves Choquet, Catherine de Vitry, Stephan Eberhard, Marianne Jaubert, Richard Kuras, Ingrid Lafontaine, Sophie Landier, Julien Selles, Olivier Vallon, Katia Wostrikoff","doi":"10.5802/crbiol.80","DOIUrl":null,"url":null,"abstract":"<p><p>Microalgae are prominent aquatic organisms, responsible for about half of the photosynthetic activity on Earth. Over the past two decades, breakthroughs in genomics and ecosystem biology, as well as the development of genetic resources in model species, have redrawn the boundaries of our knowledge on the relevance of these microbes in global ecosystems. However, considering their vast biodiversity and complex evolutionary history, our comprehension of algal biology remains limited. As algae rely on light, both as their main source of energy and for information about their environment, we focus here on photosynthesis, photoperception, and chloroplast biogenesis in the green alga Chlamydomonas reinhardtii and marine diatoms. We describe how the studies of light-driven processes are key to assessing functional biodiversity in evolutionary distant microalgae. We also emphasize that integration of laboratory and environmental studies, and dialogues between different scientific communities are both timely and essential to understand the life of phototrophs in complex ecosystems and to properly assess the consequences of environmental changes on aquatic environments globally.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Light-driven processes: key players of the functional biodiversity in microalgae.\",\"authors\":\"Angela Falciatore, Benjamin Bailleul, Alix Boulouis, Jean-Pierre Bouly, Sandrine Bujaldon, Soizic Cheminant-Navarro, Yves Choquet, Catherine de Vitry, Stephan Eberhard, Marianne Jaubert, Richard Kuras, Ingrid Lafontaine, Sophie Landier, Julien Selles, Olivier Vallon, Katia Wostrikoff\",\"doi\":\"10.5802/crbiol.80\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microalgae are prominent aquatic organisms, responsible for about half of the photosynthetic activity on Earth. Over the past two decades, breakthroughs in genomics and ecosystem biology, as well as the development of genetic resources in model species, have redrawn the boundaries of our knowledge on the relevance of these microbes in global ecosystems. However, considering their vast biodiversity and complex evolutionary history, our comprehension of algal biology remains limited. As algae rely on light, both as their main source of energy and for information about their environment, we focus here on photosynthesis, photoperception, and chloroplast biogenesis in the green alga Chlamydomonas reinhardtii and marine diatoms. We describe how the studies of light-driven processes are key to assessing functional biodiversity in evolutionary distant microalgae. We also emphasize that integration of laboratory and environmental studies, and dialogues between different scientific communities are both timely and essential to understand the life of phototrophs in complex ecosystems and to properly assess the consequences of environmental changes on aquatic environments globally.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.5802/crbiol.80\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.5802/crbiol.80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Light-driven processes: key players of the functional biodiversity in microalgae.
Microalgae are prominent aquatic organisms, responsible for about half of the photosynthetic activity on Earth. Over the past two decades, breakthroughs in genomics and ecosystem biology, as well as the development of genetic resources in model species, have redrawn the boundaries of our knowledge on the relevance of these microbes in global ecosystems. However, considering their vast biodiversity and complex evolutionary history, our comprehension of algal biology remains limited. As algae rely on light, both as their main source of energy and for information about their environment, we focus here on photosynthesis, photoperception, and chloroplast biogenesis in the green alga Chlamydomonas reinhardtii and marine diatoms. We describe how the studies of light-driven processes are key to assessing functional biodiversity in evolutionary distant microalgae. We also emphasize that integration of laboratory and environmental studies, and dialogues between different scientific communities are both timely and essential to understand the life of phototrophs in complex ecosystems and to properly assess the consequences of environmental changes on aquatic environments globally.