{"title":"长链非编码rna揭示了控制基因表达的新调控机制。","authors":"Martin Crespi","doi":"10.5802/crbiol.106","DOIUrl":null,"url":null,"abstract":"<p><p>A plethora of non-coding RNAs have been found in eukaryotes, notably with the advent of modern sequencing technologies to analyze the transcriptome. Apart from the well-known housekeeping RNA genes (such as the ribosomal RNA or the transfer RNA), many thousands of transcripts detected are not evidently linked to a protein-coding gene. These, so called non-coding RNAs, may code for crucial regulators of gene expression, the small si/miRNAs, for small peptides (translated under specific conditions) or may act as long RNA molecules (antisense, intronic or intergenic long non-coding RNAs or lncRNAs). The lncRNAs interact with members of multiple machineries involved in gene regulation. In this review, we discussed about how plant lncRNAs permitted to discover new regulatory mechanisms acting in epigenetic control, chromatin 3D structure and alternative splicing. These novel regulations diversified the expression patterns and protein variants of target protein-coding genes and are an important element of the response of plants to environmental stresses and their adaptation to changing conditions.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Long non-coding RNAs reveal new regulatory mechanisms controlling gene expression.\",\"authors\":\"Martin Crespi\",\"doi\":\"10.5802/crbiol.106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A plethora of non-coding RNAs have been found in eukaryotes, notably with the advent of modern sequencing technologies to analyze the transcriptome. Apart from the well-known housekeeping RNA genes (such as the ribosomal RNA or the transfer RNA), many thousands of transcripts detected are not evidently linked to a protein-coding gene. These, so called non-coding RNAs, may code for crucial regulators of gene expression, the small si/miRNAs, for small peptides (translated under specific conditions) or may act as long RNA molecules (antisense, intronic or intergenic long non-coding RNAs or lncRNAs). The lncRNAs interact with members of multiple machineries involved in gene regulation. In this review, we discussed about how plant lncRNAs permitted to discover new regulatory mechanisms acting in epigenetic control, chromatin 3D structure and alternative splicing. These novel regulations diversified the expression patterns and protein variants of target protein-coding genes and are an important element of the response of plants to environmental stresses and their adaptation to changing conditions.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.5802/crbiol.106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.5802/crbiol.106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Long non-coding RNAs reveal new regulatory mechanisms controlling gene expression.
A plethora of non-coding RNAs have been found in eukaryotes, notably with the advent of modern sequencing technologies to analyze the transcriptome. Apart from the well-known housekeeping RNA genes (such as the ribosomal RNA or the transfer RNA), many thousands of transcripts detected are not evidently linked to a protein-coding gene. These, so called non-coding RNAs, may code for crucial regulators of gene expression, the small si/miRNAs, for small peptides (translated under specific conditions) or may act as long RNA molecules (antisense, intronic or intergenic long non-coding RNAs or lncRNAs). The lncRNAs interact with members of multiple machineries involved in gene regulation. In this review, we discussed about how plant lncRNAs permitted to discover new regulatory mechanisms acting in epigenetic control, chromatin 3D structure and alternative splicing. These novel regulations diversified the expression patterns and protein variants of target protein-coding genes and are an important element of the response of plants to environmental stresses and their adaptation to changing conditions.