Mayur G Naitam, Govind Singh Tomar, Rajeev Kaushik
{"title":"固态发酵产聚3-羟基丁酸曲霉全新纤维素酶混合物的优化与生产。","authors":"Mayur G Naitam, Govind Singh Tomar, Rajeev Kaushik","doi":"10.1186/s40694-022-00147-6","DOIUrl":null,"url":null,"abstract":"<p><p>The production of petroleum-based plastics increased dramatically following industrialization. Because of multifaceted properties such as durability, thermostability, water resistance, and many others, these plastics have become an indispensable part of daily life. However, while improving people's quality of life, indiscriminate use of plastics has caused pollution and raised environmental concerns. To address this situation and reduce environmental risks, microbially produced biopolymers such as poly-3-hydroxyalkanoates can be used to make bioplastics that are completely biodegradable under normal environmental conditions. At the moment, the cost of bioplastic production is high when compared to petroleum-based plastics, so alternate strategies for making the bioplastic process economical are urgently needed. Agricultural waste is abundant around the world and can be efficiently used as a low-cost renewable feedstock after pretreatment and enzymatic hydrolysis. Fungi are well known as primary degraders of lignocellulosic waste, and this property was used in the current study to enzymatically hydrolyze the pretreated paddy straw for the production of reducing sugars, which were then used in the microbial fermentation for the production of PHB. In this study, Aspergillus nidulans was used to advance a low-cost and efficient enzyme hydrolysis system for the generation of reducing sugars from lignocellulosic biomass. For the production of the holocellulosic enzyme complex, the fungus was grown on wheat straw with Reese mineral medium as a wetting agent. After 216 h of solid-state fermentation at 30 °C, pH 6.0, the enzyme extract from A. nidulans demonstrated the highest activity, CMCase 68.58 (± 0.55), FPase 12.0 (± 0.06), Xylanase 27.17 (± 0.83), and β-glucosidase 1.89 (± 0.037). The initial pH, incubation temperature, and time all had a significant impact on final enzyme activity. Enzymatic hydrolysis of pretreated paddy straw produced reducing sugars (8.484 to 30.91 gL<sup>-1</sup>) that were then used to produce poly(3-hydroxybutyrate) using halophilic bacterial isolates. Burkholderia gladioli 2S4R1 and Bacillus cereus LB7 accumulated 26.80% and 20.47% PHB of the cell dry weight, respectively. This suggests that the holocellulosic enzyme cocktail could play a role in the enzymatic hydrolysis of lignocellulosic materials and the production of PHA from less expensive feedstocks such as agricultural waste.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"9 1","pages":"17"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9758824/pdf/","citationCount":"5","resultStr":"{\"title\":\"Optimization and production of holocellulosic enzyme cocktail from fungi Aspergillus nidulans under solid-state fermentation for the production of poly(3-hydroxybutyrate).\",\"authors\":\"Mayur G Naitam, Govind Singh Tomar, Rajeev Kaushik\",\"doi\":\"10.1186/s40694-022-00147-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The production of petroleum-based plastics increased dramatically following industrialization. Because of multifaceted properties such as durability, thermostability, water resistance, and many others, these plastics have become an indispensable part of daily life. However, while improving people's quality of life, indiscriminate use of plastics has caused pollution and raised environmental concerns. To address this situation and reduce environmental risks, microbially produced biopolymers such as poly-3-hydroxyalkanoates can be used to make bioplastics that are completely biodegradable under normal environmental conditions. At the moment, the cost of bioplastic production is high when compared to petroleum-based plastics, so alternate strategies for making the bioplastic process economical are urgently needed. Agricultural waste is abundant around the world and can be efficiently used as a low-cost renewable feedstock after pretreatment and enzymatic hydrolysis. Fungi are well known as primary degraders of lignocellulosic waste, and this property was used in the current study to enzymatically hydrolyze the pretreated paddy straw for the production of reducing sugars, which were then used in the microbial fermentation for the production of PHB. In this study, Aspergillus nidulans was used to advance a low-cost and efficient enzyme hydrolysis system for the generation of reducing sugars from lignocellulosic biomass. For the production of the holocellulosic enzyme complex, the fungus was grown on wheat straw with Reese mineral medium as a wetting agent. After 216 h of solid-state fermentation at 30 °C, pH 6.0, the enzyme extract from A. nidulans demonstrated the highest activity, CMCase 68.58 (± 0.55), FPase 12.0 (± 0.06), Xylanase 27.17 (± 0.83), and β-glucosidase 1.89 (± 0.037). The initial pH, incubation temperature, and time all had a significant impact on final enzyme activity. Enzymatic hydrolysis of pretreated paddy straw produced reducing sugars (8.484 to 30.91 gL<sup>-1</sup>) that were then used to produce poly(3-hydroxybutyrate) using halophilic bacterial isolates. Burkholderia gladioli 2S4R1 and Bacillus cereus LB7 accumulated 26.80% and 20.47% PHB of the cell dry weight, respectively. This suggests that the holocellulosic enzyme cocktail could play a role in the enzymatic hydrolysis of lignocellulosic materials and the production of PHA from less expensive feedstocks such as agricultural waste.</p>\",\"PeriodicalId\":52292,\"journal\":{\"name\":\"Fungal Biology and Biotechnology\",\"volume\":\"9 1\",\"pages\":\"17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9758824/pdf/\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fungal Biology and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40694-022-00147-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Biology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40694-022-00147-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Optimization and production of holocellulosic enzyme cocktail from fungi Aspergillus nidulans under solid-state fermentation for the production of poly(3-hydroxybutyrate).
The production of petroleum-based plastics increased dramatically following industrialization. Because of multifaceted properties such as durability, thermostability, water resistance, and many others, these plastics have become an indispensable part of daily life. However, while improving people's quality of life, indiscriminate use of plastics has caused pollution and raised environmental concerns. To address this situation and reduce environmental risks, microbially produced biopolymers such as poly-3-hydroxyalkanoates can be used to make bioplastics that are completely biodegradable under normal environmental conditions. At the moment, the cost of bioplastic production is high when compared to petroleum-based plastics, so alternate strategies for making the bioplastic process economical are urgently needed. Agricultural waste is abundant around the world and can be efficiently used as a low-cost renewable feedstock after pretreatment and enzymatic hydrolysis. Fungi are well known as primary degraders of lignocellulosic waste, and this property was used in the current study to enzymatically hydrolyze the pretreated paddy straw for the production of reducing sugars, which were then used in the microbial fermentation for the production of PHB. In this study, Aspergillus nidulans was used to advance a low-cost and efficient enzyme hydrolysis system for the generation of reducing sugars from lignocellulosic biomass. For the production of the holocellulosic enzyme complex, the fungus was grown on wheat straw with Reese mineral medium as a wetting agent. After 216 h of solid-state fermentation at 30 °C, pH 6.0, the enzyme extract from A. nidulans demonstrated the highest activity, CMCase 68.58 (± 0.55), FPase 12.0 (± 0.06), Xylanase 27.17 (± 0.83), and β-glucosidase 1.89 (± 0.037). The initial pH, incubation temperature, and time all had a significant impact on final enzyme activity. Enzymatic hydrolysis of pretreated paddy straw produced reducing sugars (8.484 to 30.91 gL-1) that were then used to produce poly(3-hydroxybutyrate) using halophilic bacterial isolates. Burkholderia gladioli 2S4R1 and Bacillus cereus LB7 accumulated 26.80% and 20.47% PHB of the cell dry weight, respectively. This suggests that the holocellulosic enzyme cocktail could play a role in the enzymatic hydrolysis of lignocellulosic materials and the production of PHA from less expensive feedstocks such as agricultural waste.