Marie P.F. Corradi , Alyanne M. de Haan , Bernard Staumont , Aldert H. Piersma , Liesbet Geris , Raymond H.H. Pieters , Cyrille A.M. Krul , Marc A.T. Teunis
{"title":"毒理学中的自然语言处理:描述不良结果途径和指导新方法方法的应用","authors":"Marie P.F. Corradi , Alyanne M. de Haan , Bernard Staumont , Aldert H. Piersma , Liesbet Geris , Raymond H.H. Pieters , Cyrille A.M. Krul , Marc A.T. Teunis","doi":"10.1016/j.bbiosy.2022.100061","DOIUrl":null,"url":null,"abstract":"<div><p>Adverse Outcome Pathways (AOPs) are conceptual frameworks that tie an initial perturbation (molecular initiating event) to a phenotypic toxicological manifestation (adverse outcome), through a series of steps (key events). They provide therefore a standardized way to map and organize toxicological mechanistic information. As such, AOPs inform on key events underlying toxicity, thus supporting the development of New Approach Methodologies (NAMs), which aim to reduce the use of animal testing for toxicology purposes.</p><p>However, the establishment of a novel AOP relies on the gathering of multiple streams of evidence and information, from available literature to knowledge databases. Often, this information is in the form of free text, also called unstructured text, which is not immediately digestible by a computer. This information is thus both tedious and increasingly time-consuming to process manually with the growing volume of data available. The advancement of machine learning provides alternative solutions to this challenge. To extract and organize information from relevant sources, it seems valuable to employ deep learning Natural Language Processing techniques.</p><p>We review here some of the recent progress in the NLP field, and show how these techniques have already demonstrated value in the biomedical and toxicology areas. We also propose an approach to efficiently and reliably extract and combine relevant toxicological information from text. This data can be used to map underlying mechanisms that lead to toxicological effects and start building quantitative models, in particular AOPs, ultimately allowing animal-free human-based hazard and risk assessment.</p></div>","PeriodicalId":72379,"journal":{"name":"Biomaterials and biosystems","volume":"7 ","pages":"Article 100061"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9934466/pdf/","citationCount":"1","resultStr":"{\"title\":\"Natural language processing in toxicology: Delineating adverse outcome pathways and guiding the application of new approach methodologies\",\"authors\":\"Marie P.F. Corradi , Alyanne M. de Haan , Bernard Staumont , Aldert H. Piersma , Liesbet Geris , Raymond H.H. Pieters , Cyrille A.M. Krul , Marc A.T. Teunis\",\"doi\":\"10.1016/j.bbiosy.2022.100061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Adverse Outcome Pathways (AOPs) are conceptual frameworks that tie an initial perturbation (molecular initiating event) to a phenotypic toxicological manifestation (adverse outcome), through a series of steps (key events). They provide therefore a standardized way to map and organize toxicological mechanistic information. As such, AOPs inform on key events underlying toxicity, thus supporting the development of New Approach Methodologies (NAMs), which aim to reduce the use of animal testing for toxicology purposes.</p><p>However, the establishment of a novel AOP relies on the gathering of multiple streams of evidence and information, from available literature to knowledge databases. Often, this information is in the form of free text, also called unstructured text, which is not immediately digestible by a computer. This information is thus both tedious and increasingly time-consuming to process manually with the growing volume of data available. The advancement of machine learning provides alternative solutions to this challenge. To extract and organize information from relevant sources, it seems valuable to employ deep learning Natural Language Processing techniques.</p><p>We review here some of the recent progress in the NLP field, and show how these techniques have already demonstrated value in the biomedical and toxicology areas. We also propose an approach to efficiently and reliably extract and combine relevant toxicological information from text. This data can be used to map underlying mechanisms that lead to toxicological effects and start building quantitative models, in particular AOPs, ultimately allowing animal-free human-based hazard and risk assessment.</p></div>\",\"PeriodicalId\":72379,\"journal\":{\"name\":\"Biomaterials and biosystems\",\"volume\":\"7 \",\"pages\":\"Article 100061\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9934466/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials and biosystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266653442200023X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials and biosystems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266653442200023X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Natural language processing in toxicology: Delineating adverse outcome pathways and guiding the application of new approach methodologies
Adverse Outcome Pathways (AOPs) are conceptual frameworks that tie an initial perturbation (molecular initiating event) to a phenotypic toxicological manifestation (adverse outcome), through a series of steps (key events). They provide therefore a standardized way to map and organize toxicological mechanistic information. As such, AOPs inform on key events underlying toxicity, thus supporting the development of New Approach Methodologies (NAMs), which aim to reduce the use of animal testing for toxicology purposes.
However, the establishment of a novel AOP relies on the gathering of multiple streams of evidence and information, from available literature to knowledge databases. Often, this information is in the form of free text, also called unstructured text, which is not immediately digestible by a computer. This information is thus both tedious and increasingly time-consuming to process manually with the growing volume of data available. The advancement of machine learning provides alternative solutions to this challenge. To extract and organize information from relevant sources, it seems valuable to employ deep learning Natural Language Processing techniques.
We review here some of the recent progress in the NLP field, and show how these techniques have already demonstrated value in the biomedical and toxicology areas. We also propose an approach to efficiently and reliably extract and combine relevant toxicological information from text. This data can be used to map underlying mechanisms that lead to toxicological effects and start building quantitative models, in particular AOPs, ultimately allowing animal-free human-based hazard and risk assessment.