Binita Chakraborty, Jovita Byemerwa, Taylor Krebs, Felicia Lim, Ching-Yi Chang, Donald P McDonnell
{"title":"免疫系统中的雌激素受体信号。","authors":"Binita Chakraborty, Jovita Byemerwa, Taylor Krebs, Felicia Lim, Ching-Yi Chang, Donald P McDonnell","doi":"10.1210/endrev/bnac017","DOIUrl":null,"url":null,"abstract":"<p><p>The immune system functions in a sexually dimorphic manner, with females exhibiting more robust immune responses than males. However, how female sex hormones affect immune function in normal homeostasis and in autoimmunity is poorly understood. In this review, we discuss how estrogens affect innate and adaptive immune cell activity and how dysregulation of estrogen signaling underlies the pathobiology of some autoimmune diseases and cancers. The potential roles of the major circulating estrogens, and each of the 3 estrogen receptors (ERα, ERβ, and G-protein coupled receptor) in the regulation of the activity of different immune cells are considered. This provides the framework for a discussion of the impact of ER modulators (aromatase inhibitors, selective estrogen receptor modulators, and selective estrogen receptor downregulators) on immunity. Synthesis of this information is timely given the considerable interest of late in defining the mechanistic basis of sex-biased responses/outcomes in patients with different cancers treated with immune checkpoint blockade. It will also be instructive with respect to the further development of ER modulators that modulate immunity in a therapeutically useful manner.</p>","PeriodicalId":11544,"journal":{"name":"Endocrine reviews","volume":null,"pages":null},"PeriodicalIF":22.0000,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Estrogen Receptor Signaling in the Immune System.\",\"authors\":\"Binita Chakraborty, Jovita Byemerwa, Taylor Krebs, Felicia Lim, Ching-Yi Chang, Donald P McDonnell\",\"doi\":\"10.1210/endrev/bnac017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The immune system functions in a sexually dimorphic manner, with females exhibiting more robust immune responses than males. However, how female sex hormones affect immune function in normal homeostasis and in autoimmunity is poorly understood. In this review, we discuss how estrogens affect innate and adaptive immune cell activity and how dysregulation of estrogen signaling underlies the pathobiology of some autoimmune diseases and cancers. The potential roles of the major circulating estrogens, and each of the 3 estrogen receptors (ERα, ERβ, and G-protein coupled receptor) in the regulation of the activity of different immune cells are considered. This provides the framework for a discussion of the impact of ER modulators (aromatase inhibitors, selective estrogen receptor modulators, and selective estrogen receptor downregulators) on immunity. Synthesis of this information is timely given the considerable interest of late in defining the mechanistic basis of sex-biased responses/outcomes in patients with different cancers treated with immune checkpoint blockade. It will also be instructive with respect to the further development of ER modulators that modulate immunity in a therapeutically useful manner.</p>\",\"PeriodicalId\":11544,\"journal\":{\"name\":\"Endocrine reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":22.0000,\"publicationDate\":\"2023-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endocrine reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1210/endrev/bnac017\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrine reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1210/endrev/bnac017","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
The immune system functions in a sexually dimorphic manner, with females exhibiting more robust immune responses than males. However, how female sex hormones affect immune function in normal homeostasis and in autoimmunity is poorly understood. In this review, we discuss how estrogens affect innate and adaptive immune cell activity and how dysregulation of estrogen signaling underlies the pathobiology of some autoimmune diseases and cancers. The potential roles of the major circulating estrogens, and each of the 3 estrogen receptors (ERα, ERβ, and G-protein coupled receptor) in the regulation of the activity of different immune cells are considered. This provides the framework for a discussion of the impact of ER modulators (aromatase inhibitors, selective estrogen receptor modulators, and selective estrogen receptor downregulators) on immunity. Synthesis of this information is timely given the considerable interest of late in defining the mechanistic basis of sex-biased responses/outcomes in patients with different cancers treated with immune checkpoint blockade. It will also be instructive with respect to the further development of ER modulators that modulate immunity in a therapeutically useful manner.
期刊介绍:
Endocrine Reviews, published bimonthly, features concise timely reviews updating key mechanistic and clinical concepts, alongside comprehensive, authoritative articles covering both experimental and clinical endocrinology themes. The journal considers topics informing clinical practice based on emerging and established evidence from clinical research. It also reviews advances in endocrine science stemming from studies in cell biology, immunology, pharmacology, genetics, molecular biology, neuroscience, reproductive medicine, and pediatric endocrinology.