大象和算法:回顾人工智能在大象监测中的当前和未来作用。

IF 3.7 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Journal of The Royal Society Interface Pub Date : 2023-11-01 Epub Date: 2023-11-15 DOI:10.1098/rsif.2023.0367
Leandra Brickson, Libby Zhang, Fritz Vollrath, Iain Douglas-Hamilton, Alexander J Titus
{"title":"大象和算法:回顾人工智能在大象监测中的当前和未来作用。","authors":"Leandra Brickson, Libby Zhang, Fritz Vollrath, Iain Douglas-Hamilton, Alexander J Titus","doi":"10.1098/rsif.2023.0367","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) and machine learning (ML) present revolutionary opportunities to enhance our understanding of animal behaviour and conservation strategies. Using elephants, a crucial species in Africa and Asia's protected areas, as our focal point, we delve into the role of AI and ML in their conservation. Given the increasing amounts of data gathered from a variety of sensors like cameras, microphones, geophones, drones and satellites, the challenge lies in managing and interpreting this vast data. New AI and ML techniques offer solutions to streamline this process, helping us extract vital information that might otherwise be overlooked. This paper focuses on the different AI-driven monitoring methods and their potential for improving elephant conservation. Collaborative efforts between AI experts and ecological researchers are essential in leveraging these innovative technologies for enhanced wildlife conservation, setting a precedent for numerous other species.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"20 208","pages":"20230367"},"PeriodicalIF":3.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10645515/pdf/","citationCount":"0","resultStr":"{\"title\":\"Elephants and algorithms: a review of the current and future role of AI in elephant monitoring.\",\"authors\":\"Leandra Brickson, Libby Zhang, Fritz Vollrath, Iain Douglas-Hamilton, Alexander J Titus\",\"doi\":\"10.1098/rsif.2023.0367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial intelligence (AI) and machine learning (ML) present revolutionary opportunities to enhance our understanding of animal behaviour and conservation strategies. Using elephants, a crucial species in Africa and Asia's protected areas, as our focal point, we delve into the role of AI and ML in their conservation. Given the increasing amounts of data gathered from a variety of sensors like cameras, microphones, geophones, drones and satellites, the challenge lies in managing and interpreting this vast data. New AI and ML techniques offer solutions to streamline this process, helping us extract vital information that might otherwise be overlooked. This paper focuses on the different AI-driven monitoring methods and their potential for improving elephant conservation. Collaborative efforts between AI experts and ecological researchers are essential in leveraging these innovative technologies for enhanced wildlife conservation, setting a precedent for numerous other species.</p>\",\"PeriodicalId\":17488,\"journal\":{\"name\":\"Journal of The Royal Society Interface\",\"volume\":\"20 208\",\"pages\":\"20230367\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10645515/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Royal Society Interface\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsif.2023.0367\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2023.0367","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)和机器学习(ML)为增强我们对动物行为和保护策略的理解提供了革命性的机会。以非洲和亚洲保护区的重要物种大象为重点,我们深入研究了人工智能和机器学习在保护它们方面的作用。考虑到从相机、麦克风、检波器、无人机和卫星等各种传感器收集到的数据越来越多,挑战在于如何管理和解释这些庞大的数据。新的人工智能和机器学习技术提供了简化这一过程的解决方案,帮助我们提取可能被忽视的重要信息。本文重点介绍了不同的人工智能驱动的监测方法及其改善大象保护的潜力。人工智能专家和生态研究人员之间的合作努力对于利用这些创新技术加强野生动物保护至关重要,为许多其他物种树立了先例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elephants and algorithms: a review of the current and future role of AI in elephant monitoring.

Artificial intelligence (AI) and machine learning (ML) present revolutionary opportunities to enhance our understanding of animal behaviour and conservation strategies. Using elephants, a crucial species in Africa and Asia's protected areas, as our focal point, we delve into the role of AI and ML in their conservation. Given the increasing amounts of data gathered from a variety of sensors like cameras, microphones, geophones, drones and satellites, the challenge lies in managing and interpreting this vast data. New AI and ML techniques offer solutions to streamline this process, helping us extract vital information that might otherwise be overlooked. This paper focuses on the different AI-driven monitoring methods and their potential for improving elephant conservation. Collaborative efforts between AI experts and ecological researchers are essential in leveraging these innovative technologies for enhanced wildlife conservation, setting a precedent for numerous other species.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Royal Society Interface
Journal of The Royal Society Interface 综合性期刊-综合性期刊
CiteScore
7.10
自引率
2.60%
发文量
234
审稿时长
2.5 months
期刊介绍: J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信