Lidita Khandeparker, Dattesh V Desai, Ravi Teja Mittireddi, Emila Panda, Niyati Hede, Kaushal Mapari
{"title":"无定形tiox涂层表面抗微观和宏观污染的效果,通过实验室微观和实地研究。","authors":"Lidita Khandeparker, Dattesh V Desai, Ravi Teja Mittireddi, Emila Panda, Niyati Hede, Kaushal Mapari","doi":"10.1080/08927014.2023.2279997","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, Soda Lime Glass (SLG) and Stainless Steel (SS316L) substrata coated with Titanium oxide (TiOx) were tested for their efficacy in the laboratory microcosms and in field against micro- and macrofouling. Laboratory microcosm studies were conducted for five days using natural biofilms, single-species diatom (<i>Navicula</i> sp.), and bacterial biofilms, whereas field observations were conducted for 30 days. The TiOx-coating induced change in the mean contact angle of the substratum and rendered SS316L more hydrophilic and SLG hydrophobic, which influenced the <i>Navicula</i> sp. biofilm, and bacterial community structure of the biofilm. Overall, the TiOx-coated SS316L showed minimal microfouling, whereas non-coated SLG exhibited greater efficacy in deterring/preventing macrofouling organisms. Moreover, the reduction in macrofouling could be attributed to high abundance of Actinobacteria. Unraveling the mechanism of action needs future studies emphasizing biochemical processes and pathways.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"853-866"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficacy of amorphous TiO<sub>x-</sub>coated surfaces against micro- and macrofouling through laboratory microcosms and field studies.\",\"authors\":\"Lidita Khandeparker, Dattesh V Desai, Ravi Teja Mittireddi, Emila Panda, Niyati Hede, Kaushal Mapari\",\"doi\":\"10.1080/08927014.2023.2279997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, Soda Lime Glass (SLG) and Stainless Steel (SS316L) substrata coated with Titanium oxide (TiOx) were tested for their efficacy in the laboratory microcosms and in field against micro- and macrofouling. Laboratory microcosm studies were conducted for five days using natural biofilms, single-species diatom (<i>Navicula</i> sp.), and bacterial biofilms, whereas field observations were conducted for 30 days. The TiOx-coating induced change in the mean contact angle of the substratum and rendered SS316L more hydrophilic and SLG hydrophobic, which influenced the <i>Navicula</i> sp. biofilm, and bacterial community structure of the biofilm. Overall, the TiOx-coated SS316L showed minimal microfouling, whereas non-coated SLG exhibited greater efficacy in deterring/preventing macrofouling organisms. Moreover, the reduction in macrofouling could be attributed to high abundance of Actinobacteria. Unraveling the mechanism of action needs future studies emphasizing biochemical processes and pathways.</p>\",\"PeriodicalId\":8898,\"journal\":{\"name\":\"Biofouling\",\"volume\":\" \",\"pages\":\"853-866\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofouling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/08927014.2023.2279997\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2023.2279997","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Efficacy of amorphous TiOx-coated surfaces against micro- and macrofouling through laboratory microcosms and field studies.
In this study, Soda Lime Glass (SLG) and Stainless Steel (SS316L) substrata coated with Titanium oxide (TiOx) were tested for their efficacy in the laboratory microcosms and in field against micro- and macrofouling. Laboratory microcosm studies were conducted for five days using natural biofilms, single-species diatom (Navicula sp.), and bacterial biofilms, whereas field observations were conducted for 30 days. The TiOx-coating induced change in the mean contact angle of the substratum and rendered SS316L more hydrophilic and SLG hydrophobic, which influenced the Navicula sp. biofilm, and bacterial community structure of the biofilm. Overall, the TiOx-coated SS316L showed minimal microfouling, whereas non-coated SLG exhibited greater efficacy in deterring/preventing macrofouling organisms. Moreover, the reduction in macrofouling could be attributed to high abundance of Actinobacteria. Unraveling the mechanism of action needs future studies emphasizing biochemical processes and pathways.
期刊介绍:
Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion.
Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context.
Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.