不屈不挠号火月车上深紫外拉曼和荧光仪器(SHERLOC)扫描适居环境的拉曼和有机化学发光(SHERLOC)拉曼带宽校准。

IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION
Applied Spectroscopy Pub Date : 2024-09-01 Epub Date: 2023-11-15 DOI:10.1177/00037028231210885
Ryan S Jakubek, Rohit Bhartia, Kyle Uckert, Sanford A Asher, Andrew D Czaja, Marc D Fries, Kevin Hand, Nikole C Haney, Joseph Razzell Hollis, Michelle Minitti, Shiv K Sharma, Sunanda Sharma, Sandra Siljeström
{"title":"不屈不挠号火月车上深紫外拉曼和荧光仪器(SHERLOC)扫描适居环境的拉曼和有机化学发光(SHERLOC)拉曼带宽校准。","authors":"Ryan S Jakubek, Rohit Bhartia, Kyle Uckert, Sanford A Asher, Andrew D Czaja, Marc D Fries, Kevin Hand, Nikole C Haney, Joseph Razzell Hollis, Michelle Minitti, Shiv K Sharma, Sunanda Sharma, Sandra Siljeström","doi":"10.1177/00037028231210885","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we derive a simple method for calibrating Raman bandwidths for the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) instrument onboard NASA's <i>Perseverance</i> rover. Raman bandwidths and shapes reported by an instrument contain contributions from both the intrinsic Raman band (IRB) and instrumental artifacts. To directly correlate bandwidth to sample properties and to compare bandwidths across instruments, the IRB width needs to be separated from instrumental effects. Here, we use the ubiquitous bandwidth calibration method of modeling the observed Raman bands as a convolution of a Lorentzian IRB and a Gaussian instrument slit function. Using calibration target data, we calculate that SHERLOC has a slit function width of 34.1 cm<sup>-1</sup>. With a measure of the instrument slit function, we can deconvolve the IRB from the observed band, providing the width of the Raman band unobscured by instrumental artifact. We present the correlation between observed Raman bandwidth and intrinsic Raman bandwidth in table form for the quick estimation of SHERLOC Raman intrinsic bandwidths. We discuss the limitations of using this model to calibrate Raman bandwidth and derive a quantitative method for calculating the errors associated with the calibration. We demonstrate the utility of this method of bandwidth calibration by examining the intrinsic bandwidths of SHERLOC sulfate spectra and by modeling the SHERLOC spectrum of olivine.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"993-1008"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calibration of Raman Bandwidths on the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) Deep Ultraviolet Raman and Fluorescence Instrument Aboard the <i>Perseverance</i> Rover.\",\"authors\":\"Ryan S Jakubek, Rohit Bhartia, Kyle Uckert, Sanford A Asher, Andrew D Czaja, Marc D Fries, Kevin Hand, Nikole C Haney, Joseph Razzell Hollis, Michelle Minitti, Shiv K Sharma, Sunanda Sharma, Sandra Siljeström\",\"doi\":\"10.1177/00037028231210885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this work, we derive a simple method for calibrating Raman bandwidths for the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) instrument onboard NASA's <i>Perseverance</i> rover. Raman bandwidths and shapes reported by an instrument contain contributions from both the intrinsic Raman band (IRB) and instrumental artifacts. To directly correlate bandwidth to sample properties and to compare bandwidths across instruments, the IRB width needs to be separated from instrumental effects. Here, we use the ubiquitous bandwidth calibration method of modeling the observed Raman bands as a convolution of a Lorentzian IRB and a Gaussian instrument slit function. Using calibration target data, we calculate that SHERLOC has a slit function width of 34.1 cm<sup>-1</sup>. With a measure of the instrument slit function, we can deconvolve the IRB from the observed band, providing the width of the Raman band unobscured by instrumental artifact. We present the correlation between observed Raman bandwidth and intrinsic Raman bandwidth in table form for the quick estimation of SHERLOC Raman intrinsic bandwidths. We discuss the limitations of using this model to calibrate Raman bandwidth and derive a quantitative method for calculating the errors associated with the calibration. We demonstrate the utility of this method of bandwidth calibration by examining the intrinsic bandwidths of SHERLOC sulfate spectra and by modeling the SHERLOC spectrum of olivine.</p>\",\"PeriodicalId\":8253,\"journal\":{\"name\":\"Applied Spectroscopy\",\"volume\":\" \",\"pages\":\"993-1008\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/00037028231210885\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028231210885","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们得到了一种简单的方法来校准拉曼带宽,用于美国宇航局毅力号漫游车上的拉曼和有机物和化学物质发光(SHERLOC)仪器扫描可居住环境。仪器报告的拉曼带宽和形状包含了内在拉曼带(IRB)和仪器伪影的贡献。为了直接将带宽与样品属性关联起来,并比较不同仪器的带宽,IRB宽度需要与仪器效应分离。在这里,我们使用无所不在的带宽校准方法将观测到的拉曼波段建模为洛伦兹IRB和高斯仪器狭缝函数的卷积。利用标定目标数据,我们计算出SHERLOC的狭缝函数宽度为34.1 cm-1。通过测量仪器狭缝函数,我们可以从观测波段对IRB进行反卷积,从而提供未被仪器伪影遮挡的拉曼带宽度。我们以表格的形式给出了观测到的拉曼带宽和本征拉曼带宽之间的关系,以便快速估计SHERLOC拉曼本征带宽。我们讨论了使用该模型校准拉曼带宽的局限性,并推导了一种定量计算与校准相关误差的方法。我们通过检查SHERLOC硫酸盐光谱的本征带宽并通过对橄榄石的SHERLOC光谱进行建模来证明这种带宽校准方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calibration of Raman Bandwidths on the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) Deep Ultraviolet Raman and Fluorescence Instrument Aboard the Perseverance Rover.

In this work, we derive a simple method for calibrating Raman bandwidths for the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) instrument onboard NASA's Perseverance rover. Raman bandwidths and shapes reported by an instrument contain contributions from both the intrinsic Raman band (IRB) and instrumental artifacts. To directly correlate bandwidth to sample properties and to compare bandwidths across instruments, the IRB width needs to be separated from instrumental effects. Here, we use the ubiquitous bandwidth calibration method of modeling the observed Raman bands as a convolution of a Lorentzian IRB and a Gaussian instrument slit function. Using calibration target data, we calculate that SHERLOC has a slit function width of 34.1 cm-1. With a measure of the instrument slit function, we can deconvolve the IRB from the observed band, providing the width of the Raman band unobscured by instrumental artifact. We present the correlation between observed Raman bandwidth and intrinsic Raman bandwidth in table form for the quick estimation of SHERLOC Raman intrinsic bandwidths. We discuss the limitations of using this model to calibrate Raman bandwidth and derive a quantitative method for calculating the errors associated with the calibration. We demonstrate the utility of this method of bandwidth calibration by examining the intrinsic bandwidths of SHERLOC sulfate spectra and by modeling the SHERLOC spectrum of olivine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Spectroscopy
Applied Spectroscopy 工程技术-光谱学
CiteScore
6.60
自引率
5.70%
发文量
139
审稿时长
3.5 months
期刊介绍: Applied Spectroscopy is one of the world''s leading spectroscopy journals, publishing high-quality peer-reviewed articles, both fundamental and applied, covering all aspects of spectroscopy. Established in 1951, the journal is owned by the Society for Applied Spectroscopy and is published monthly. The journal is dedicated to fulfilling the mission of the Society to “…advance and disseminate knowledge and information concerning the art and science of spectroscopy and other allied sciences.”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信