Orla L. Sherwood, Rebecca Carroll, Stephen Burke, Paul F. McCabe, Joanna Kacprzyk
{"title":"研究植物耐缺氧性的一种简单而经济的方法","authors":"Orla L. Sherwood, Rebecca Carroll, Stephen Burke, Paul F. McCabe, Joanna Kacprzyk","doi":"10.1002/aps3.11509","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Premise</h3>\n \n <p>We developed a novel, cost-effective protocol that facilitates testing anoxia tolerance in plants without access to specialized equipment.</p>\n </section>\n \n <section>\n \n <h3> Methods and Results</h3>\n \n <p><i>Arabidopsis thaliana</i> and barley (<i>Hordeum vulgare</i>) seedlings were treated in airtight 2-L Kilner jars. An anoxic atmosphere was generated using Oxoid AnaeroGen 2.5-L sachets placed on in-house, custom-built wire stands. The performed experiments confirmed a higher sensitivity to low oxygen stress previously observed in <i>anac017 A. thaliana</i> mutants and the positive effect of exogenous sucrose on anoxia tolerance reported by previous studies in <i>A. thaliana</i>. Barley seedlings displayed typical responses to anoxia treatment, including shoot growth cessation and the induction of marker genes for anaerobic metabolism and ethylene biosynthesis in root tissue.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>The results validate the novel method as an inexpensive, simple alternative for testing anoxia tolerance in plants, where access to an anaerobic workstation is not possible. The novel protocol requires minimum investment and is easily adaptable.</p>\n </section>\n </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":"11 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bsapubs.onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11509","citationCount":"0","resultStr":"{\"title\":\"A simple and cost-effective method for studying anoxia tolerance in plants\",\"authors\":\"Orla L. Sherwood, Rebecca Carroll, Stephen Burke, Paul F. McCabe, Joanna Kacprzyk\",\"doi\":\"10.1002/aps3.11509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Premise</h3>\\n \\n <p>We developed a novel, cost-effective protocol that facilitates testing anoxia tolerance in plants without access to specialized equipment.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods and Results</h3>\\n \\n <p><i>Arabidopsis thaliana</i> and barley (<i>Hordeum vulgare</i>) seedlings were treated in airtight 2-L Kilner jars. An anoxic atmosphere was generated using Oxoid AnaeroGen 2.5-L sachets placed on in-house, custom-built wire stands. The performed experiments confirmed a higher sensitivity to low oxygen stress previously observed in <i>anac017 A. thaliana</i> mutants and the positive effect of exogenous sucrose on anoxia tolerance reported by previous studies in <i>A. thaliana</i>. Barley seedlings displayed typical responses to anoxia treatment, including shoot growth cessation and the induction of marker genes for anaerobic metabolism and ethylene biosynthesis in root tissue.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>The results validate the novel method as an inexpensive, simple alternative for testing anoxia tolerance in plants, where access to an anaerobic workstation is not possible. The novel protocol requires minimum investment and is easily adaptable.</p>\\n </section>\\n </div>\",\"PeriodicalId\":8022,\"journal\":{\"name\":\"Applications in Plant Sciences\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://bsapubs.onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11509\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applications in Plant Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aps3.11509\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in Plant Sciences","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aps3.11509","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
A simple and cost-effective method for studying anoxia tolerance in plants
Premise
We developed a novel, cost-effective protocol that facilitates testing anoxia tolerance in plants without access to specialized equipment.
Methods and Results
Arabidopsis thaliana and barley (Hordeum vulgare) seedlings were treated in airtight 2-L Kilner jars. An anoxic atmosphere was generated using Oxoid AnaeroGen 2.5-L sachets placed on in-house, custom-built wire stands. The performed experiments confirmed a higher sensitivity to low oxygen stress previously observed in anac017 A. thaliana mutants and the positive effect of exogenous sucrose on anoxia tolerance reported by previous studies in A. thaliana. Barley seedlings displayed typical responses to anoxia treatment, including shoot growth cessation and the induction of marker genes for anaerobic metabolism and ethylene biosynthesis in root tissue.
Conclusions
The results validate the novel method as an inexpensive, simple alternative for testing anoxia tolerance in plants, where access to an anaerobic workstation is not possible. The novel protocol requires minimum investment and is easily adaptable.
期刊介绍:
Applications in Plant Sciences (APPS) is a monthly, peer-reviewed, open access journal promoting the rapid dissemination of newly developed, innovative tools and protocols in all areas of the plant sciences, including genetics, structure, function, development, evolution, systematics, and ecology. Given the rapid progress today in technology and its application in the plant sciences, the goal of APPS is to foster communication within the plant science community to advance scientific research. APPS is a publication of the Botanical Society of America, originating in 2009 as the American Journal of Botany''s online-only section, AJB Primer Notes & Protocols in the Plant Sciences.
APPS publishes the following types of articles: (1) Protocol Notes describe new methods and technological advancements; (2) Genomic Resources Articles characterize the development and demonstrate the usefulness of newly developed genomic resources, including transcriptomes; (3) Software Notes detail new software applications; (4) Application Articles illustrate the application of a new protocol, method, or software application within the context of a larger study; (5) Review Articles evaluate available techniques, methods, or protocols; (6) Primer Notes report novel genetic markers with evidence of wide applicability.