{"title":"原儿茶酸通过激活Nrf2-Keap1信号通路,降低h2o2诱导的类风湿性关节炎成纤维细胞样滑膜细胞的迁移和氧化应激。","authors":"Yan Liu, Yucheng Zhang, Keke Zhang, Yue Wang","doi":"10.4103/cjop.CJOP-D-22-00087","DOIUrl":null,"url":null,"abstract":"<p><p>Honeycomb (Nidus vespae) is traditional Chinese medicine and can treat rheumatoid arthritis (RA), and protocatechuic acid (PCA) is a bioactive component of honeycomb. This study aimed to investigate whether PCA could reduce the H<sub>2</sub>O<sub>2</sub>-induced migration and oxidative stress of RA fibroblast-like synoviocytes (RA-FLSs). H<sub>2</sub>O<sub>2</sub>-induced RA-FLSs were used to simulate the in vitro model of RA. The viability, apoptosis, migration, invasion, and oxidative stress of RA-FLSs were detected by Cell Counting Kit-8 (CCK-8), terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, wound healing, transwell assays, DCFDA staining, and malonaldehyde and superoxide dismutase enzyme-linked immunosorbent assay kits. The expression of migration and invasion-related proteins and Nrf2/Keap1 signaling pathway-related proteins was analyzed by western blotting. As a result, PCA suppressed the viability, migration, invasion, and oxidative and promoted apoptosis of H<sub>2</sub>O<sub>2</sub>-induced RA-FLSs by activating the Nrf2/Keap1 signaling pathway. ML-385, an Nrf2 inhibitor, could enhance the viability, migration, invasion, and oxidative and inhibited apoptosis of H<sub>2</sub>O<sub>2</sub>-induced RA-FLSs. In conclusion, PCA reduced H<sub>2</sub>O<sub>2</sub>-induced migration and oxidative stress of RA-FLSs by activating the Nrf2-Keap1 signaling pathway.</p>","PeriodicalId":10251,"journal":{"name":"Chinese Journal of Physiology","volume":"66 1","pages":"28-35"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Protocatechuic acid reduces H<sub>2</sub>O<sub>2</sub>-induced migration and oxidative stress of fibroblast-like synoviocytes in rheumatoid arthritis by activating Nrf2-Keap1 signaling pathway.\",\"authors\":\"Yan Liu, Yucheng Zhang, Keke Zhang, Yue Wang\",\"doi\":\"10.4103/cjop.CJOP-D-22-00087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Honeycomb (Nidus vespae) is traditional Chinese medicine and can treat rheumatoid arthritis (RA), and protocatechuic acid (PCA) is a bioactive component of honeycomb. This study aimed to investigate whether PCA could reduce the H<sub>2</sub>O<sub>2</sub>-induced migration and oxidative stress of RA fibroblast-like synoviocytes (RA-FLSs). H<sub>2</sub>O<sub>2</sub>-induced RA-FLSs were used to simulate the in vitro model of RA. The viability, apoptosis, migration, invasion, and oxidative stress of RA-FLSs were detected by Cell Counting Kit-8 (CCK-8), terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, wound healing, transwell assays, DCFDA staining, and malonaldehyde and superoxide dismutase enzyme-linked immunosorbent assay kits. The expression of migration and invasion-related proteins and Nrf2/Keap1 signaling pathway-related proteins was analyzed by western blotting. As a result, PCA suppressed the viability, migration, invasion, and oxidative and promoted apoptosis of H<sub>2</sub>O<sub>2</sub>-induced RA-FLSs by activating the Nrf2/Keap1 signaling pathway. ML-385, an Nrf2 inhibitor, could enhance the viability, migration, invasion, and oxidative and inhibited apoptosis of H<sub>2</sub>O<sub>2</sub>-induced RA-FLSs. In conclusion, PCA reduced H<sub>2</sub>O<sub>2</sub>-induced migration and oxidative stress of RA-FLSs by activating the Nrf2-Keap1 signaling pathway.</p>\",\"PeriodicalId\":10251,\"journal\":{\"name\":\"Chinese Journal of Physiology\",\"volume\":\"66 1\",\"pages\":\"28-35\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4103/cjop.CJOP-D-22-00087\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/cjop.CJOP-D-22-00087","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Protocatechuic acid reduces H2O2-induced migration and oxidative stress of fibroblast-like synoviocytes in rheumatoid arthritis by activating Nrf2-Keap1 signaling pathway.
Honeycomb (Nidus vespae) is traditional Chinese medicine and can treat rheumatoid arthritis (RA), and protocatechuic acid (PCA) is a bioactive component of honeycomb. This study aimed to investigate whether PCA could reduce the H2O2-induced migration and oxidative stress of RA fibroblast-like synoviocytes (RA-FLSs). H2O2-induced RA-FLSs were used to simulate the in vitro model of RA. The viability, apoptosis, migration, invasion, and oxidative stress of RA-FLSs were detected by Cell Counting Kit-8 (CCK-8), terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, wound healing, transwell assays, DCFDA staining, and malonaldehyde and superoxide dismutase enzyme-linked immunosorbent assay kits. The expression of migration and invasion-related proteins and Nrf2/Keap1 signaling pathway-related proteins was analyzed by western blotting. As a result, PCA suppressed the viability, migration, invasion, and oxidative and promoted apoptosis of H2O2-induced RA-FLSs by activating the Nrf2/Keap1 signaling pathway. ML-385, an Nrf2 inhibitor, could enhance the viability, migration, invasion, and oxidative and inhibited apoptosis of H2O2-induced RA-FLSs. In conclusion, PCA reduced H2O2-induced migration and oxidative stress of RA-FLSs by activating the Nrf2-Keap1 signaling pathway.
期刊介绍:
Chinese Journal of Physiology is a multidisciplinary open access journal.
Chinese Journal of Physiology (CJP) publishes high quality original research papers in physiology and pathophysiology by authors all over the world. CJP welcomes submitted research papers in all aspects of physiology science in the molecular, cellular, tissue and systemic levels. Multidisciplinary sciences with a focus to understand the role of physiology in health and disease are also encouraged.
Chinese Journal of Physiology accepts fourfold article types: Original Article, Review Article (Mini-Review included), Short Communication, and Editorial. There is no cost for readers to access the full-text contents of publications.