{"title":"陶瓷和不锈钢正畸附件上生物膜的厚度、活/死细菌比率和矿物质含量的长期变化。","authors":"Anjali Krishnan, Rahul Rajendran, Deepak Damodaran, Sreelekshmi K Manmadhan, Vinod Krishnan","doi":"10.1007/s00056-023-00452-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Fixed orthodontic appliances induce biofilm deposition, which harbors a microbial population harmful to the periodontal health of the individual. The present study evaluated the changes in thickness, live/dead bacterial ratio, and mineral content in dental biofilm over 6 months in patients with either stainless steel or ceramic orthodontic attachments.</p><p><strong>Methods: </strong>Eighty patients who require fixed orthodontic appliance treatment with first premolar extraction for correcting their malocclusion were selected and bonded with either stainless steel or ceramic orthodontic attachments on the buccal side. The attached buttons were retrieved at different periods-1 week, 1 month, 3 months, and 6 months. They were stained and visualized through confocal microscopy to detect biofilm thickness and the ratio of live/dead bacteria. X‑ray diffraction was used to identify the presence of calcium and phosphorous.</p><p><strong>Results: </strong>Ceramic attachments showed a greater increase in biofilm thickness in comparison to stainless steel attachments except in the initial 1‑week evaluation. A higher live/dead bacterial ratio was observed in stainless steel attachments than in their ceramic counterparts at all four evaluation periods. Both stainless steel and ceramic surfaces exhibited the presence of mineral deposition (calcium and phosphorous) at all periods.</p><p><strong>Conclusions: </strong>More biofilm adhesion was observed over ceramic surfaces than over stainless steel orthodontic attachments. Stainless steel attachments exhibited biofilm with a higher live/dead bacterial ratio than their ceramic counterparts at all evaluation periods. The presence of calcium and phosphorous in the adhered biofilm, pointing toward its calcification process, was identified.</p>","PeriodicalId":54776,"journal":{"name":"Journal of Orofacial Orthopedics-Fortschritte Der Kieferorthopadie","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-term changes in thickness, live/dead bacterial ratio, and mineral content in biofilm on ceramic and stainless steel orthodontic attachments.\",\"authors\":\"Anjali Krishnan, Rahul Rajendran, Deepak Damodaran, Sreelekshmi K Manmadhan, Vinod Krishnan\",\"doi\":\"10.1007/s00056-023-00452-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Fixed orthodontic appliances induce biofilm deposition, which harbors a microbial population harmful to the periodontal health of the individual. The present study evaluated the changes in thickness, live/dead bacterial ratio, and mineral content in dental biofilm over 6 months in patients with either stainless steel or ceramic orthodontic attachments.</p><p><strong>Methods: </strong>Eighty patients who require fixed orthodontic appliance treatment with first premolar extraction for correcting their malocclusion were selected and bonded with either stainless steel or ceramic orthodontic attachments on the buccal side. The attached buttons were retrieved at different periods-1 week, 1 month, 3 months, and 6 months. They were stained and visualized through confocal microscopy to detect biofilm thickness and the ratio of live/dead bacteria. X‑ray diffraction was used to identify the presence of calcium and phosphorous.</p><p><strong>Results: </strong>Ceramic attachments showed a greater increase in biofilm thickness in comparison to stainless steel attachments except in the initial 1‑week evaluation. A higher live/dead bacterial ratio was observed in stainless steel attachments than in their ceramic counterparts at all four evaluation periods. Both stainless steel and ceramic surfaces exhibited the presence of mineral deposition (calcium and phosphorous) at all periods.</p><p><strong>Conclusions: </strong>More biofilm adhesion was observed over ceramic surfaces than over stainless steel orthodontic attachments. Stainless steel attachments exhibited biofilm with a higher live/dead bacterial ratio than their ceramic counterparts at all evaluation periods. The presence of calcium and phosphorous in the adhered biofilm, pointing toward its calcification process, was identified.</p>\",\"PeriodicalId\":54776,\"journal\":{\"name\":\"Journal of Orofacial Orthopedics-Fortschritte Der Kieferorthopadie\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Orofacial Orthopedics-Fortschritte Der Kieferorthopadie\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00056-023-00452-8\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/2/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orofacial Orthopedics-Fortschritte Der Kieferorthopadie","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00056-023-00452-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Long-term changes in thickness, live/dead bacterial ratio, and mineral content in biofilm on ceramic and stainless steel orthodontic attachments.
Purpose: Fixed orthodontic appliances induce biofilm deposition, which harbors a microbial population harmful to the periodontal health of the individual. The present study evaluated the changes in thickness, live/dead bacterial ratio, and mineral content in dental biofilm over 6 months in patients with either stainless steel or ceramic orthodontic attachments.
Methods: Eighty patients who require fixed orthodontic appliance treatment with first premolar extraction for correcting their malocclusion were selected and bonded with either stainless steel or ceramic orthodontic attachments on the buccal side. The attached buttons were retrieved at different periods-1 week, 1 month, 3 months, and 6 months. They were stained and visualized through confocal microscopy to detect biofilm thickness and the ratio of live/dead bacteria. X‑ray diffraction was used to identify the presence of calcium and phosphorous.
Results: Ceramic attachments showed a greater increase in biofilm thickness in comparison to stainless steel attachments except in the initial 1‑week evaluation. A higher live/dead bacterial ratio was observed in stainless steel attachments than in their ceramic counterparts at all four evaluation periods. Both stainless steel and ceramic surfaces exhibited the presence of mineral deposition (calcium and phosphorous) at all periods.
Conclusions: More biofilm adhesion was observed over ceramic surfaces than over stainless steel orthodontic attachments. Stainless steel attachments exhibited biofilm with a higher live/dead bacterial ratio than their ceramic counterparts at all evaluation periods. The presence of calcium and phosphorous in the adhered biofilm, pointing toward its calcification process, was identified.
期刊介绍:
The Journal of Orofacial Orthopedics provides orthodontists and dentists who are also actively interested in orthodontics, whether in university clinics or private practice, with highly authoritative and up-to-date information based on experimental and clinical research. The journal is one of the leading publications for the promulgation of the results of original work both in the areas of scientific and clinical orthodontics and related areas. All articles undergo peer review before publication. The German Society of Orthodontics (DGKFO) also publishes in the journal important communications, statements and announcements.