{"title":"HPLC/ICP-MS分析食品中无机砷形态:方法建立与验证。","authors":"Yu-Cheng Lai, Yi-Chen Tsai, Yu-Ning Shin, Ya-Chun Chou, Ying-Ru Shen, Nu-Ching Lin, Shu-Han Chang, Ya-Min Kao, Su-Hsiang Tseng, Der-Yuan Wang","doi":"10.38212/2224-6614.3432","DOIUrl":null,"url":null,"abstract":"<p><p>Arsenic (As) compounds can be classified as organic or inorganic, with inorganic arsenic (iAs) having significantly higher toxicity than organic As. As may accumulate in food materials that have been exposed to As-contaminated environments. Thus, the \"Sanitation Standard for Contaminants and Toxins in Foods\" published by the Ministry of Health and Welfare set the standard limits for iAs content in rice, seaweed, seafood, and marine oils to safeguard public health. Therefore, a robust analytical method must be developed to selectively and quantitatively determine iAs content in rice, seaweed, seafood, and marine oils. Herein, we reported and verified the method of combined high-performance liquid chromatography/inductively coupled plasma-mass spectrometry (HPLC/ICP-MS) to determine iAs content in a wide variety of food. The fish oil samples were spiked with different concentrations of the As(III) standard solution, and their iAs analyzes were obtained via extraction procedures using the 1% (w/w) nitric acid (HNO<sub>3</sub>) solution containing 0.2 M hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) under sonication. The extracts were subsequently analyzed for their As(V) contents using HPLC/ICP-MS with aqueous ammonium carbonate as the mobile phase. The As(III) species had completely oxidized into the As(V) species, which prevented interferences between organic and iAs during chromatography. The method showed good extraction efficiencies (generally >90%) for the iAs samples, and their limits of quantification in fish oil were 0.02 mg/kg. The method was verified via the iAs speciation analytes of rice, seaweed, seafood, and marine oil matrices. The average recoveries for the fortified samples of each matrix ranged from 87.5 to 112.4%, with their coefficients of variation being less than 10%. Surveillance studies were conducted on the iAs contents of food samples purchased from local Taiwanese markets. The results showed that the only Hijiki (Sargassum fusiforme) higher than the maximum limit of the sanitation standard for iAs in seaweed, whereas the remaining samples met their corresponding requirements. This method is quick and straightforward, and it can be applied for the routine analysis of iAs content in a wide variety of food products to ensure public health safety.</p>","PeriodicalId":358,"journal":{"name":"Journal of Food and Drug Analysis","volume":"30 4","pages":"644-653"},"PeriodicalIF":2.6000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/72/44/jfda-30-04-644.PMC9910291.pdf","citationCount":"1","resultStr":"{\"title\":\"Inorganic arsenic speciation analysis in food using HPLC/ICP-MS: Method development and validation.\",\"authors\":\"Yu-Cheng Lai, Yi-Chen Tsai, Yu-Ning Shin, Ya-Chun Chou, Ying-Ru Shen, Nu-Ching Lin, Shu-Han Chang, Ya-Min Kao, Su-Hsiang Tseng, Der-Yuan Wang\",\"doi\":\"10.38212/2224-6614.3432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Arsenic (As) compounds can be classified as organic or inorganic, with inorganic arsenic (iAs) having significantly higher toxicity than organic As. As may accumulate in food materials that have been exposed to As-contaminated environments. Thus, the \\\"Sanitation Standard for Contaminants and Toxins in Foods\\\" published by the Ministry of Health and Welfare set the standard limits for iAs content in rice, seaweed, seafood, and marine oils to safeguard public health. Therefore, a robust analytical method must be developed to selectively and quantitatively determine iAs content in rice, seaweed, seafood, and marine oils. Herein, we reported and verified the method of combined high-performance liquid chromatography/inductively coupled plasma-mass spectrometry (HPLC/ICP-MS) to determine iAs content in a wide variety of food. The fish oil samples were spiked with different concentrations of the As(III) standard solution, and their iAs analyzes were obtained via extraction procedures using the 1% (w/w) nitric acid (HNO<sub>3</sub>) solution containing 0.2 M hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) under sonication. The extracts were subsequently analyzed for their As(V) contents using HPLC/ICP-MS with aqueous ammonium carbonate as the mobile phase. The As(III) species had completely oxidized into the As(V) species, which prevented interferences between organic and iAs during chromatography. The method showed good extraction efficiencies (generally >90%) for the iAs samples, and their limits of quantification in fish oil were 0.02 mg/kg. The method was verified via the iAs speciation analytes of rice, seaweed, seafood, and marine oil matrices. The average recoveries for the fortified samples of each matrix ranged from 87.5 to 112.4%, with their coefficients of variation being less than 10%. Surveillance studies were conducted on the iAs contents of food samples purchased from local Taiwanese markets. The results showed that the only Hijiki (Sargassum fusiforme) higher than the maximum limit of the sanitation standard for iAs in seaweed, whereas the remaining samples met their corresponding requirements. This method is quick and straightforward, and it can be applied for the routine analysis of iAs content in a wide variety of food products to ensure public health safety.</p>\",\"PeriodicalId\":358,\"journal\":{\"name\":\"Journal of Food and Drug Analysis\",\"volume\":\"30 4\",\"pages\":\"644-653\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/72/44/jfda-30-04-644.PMC9910291.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food and Drug Analysis\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.38212/2224-6614.3432\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food and Drug Analysis","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.38212/2224-6614.3432","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Inorganic arsenic speciation analysis in food using HPLC/ICP-MS: Method development and validation.
Arsenic (As) compounds can be classified as organic or inorganic, with inorganic arsenic (iAs) having significantly higher toxicity than organic As. As may accumulate in food materials that have been exposed to As-contaminated environments. Thus, the "Sanitation Standard for Contaminants and Toxins in Foods" published by the Ministry of Health and Welfare set the standard limits for iAs content in rice, seaweed, seafood, and marine oils to safeguard public health. Therefore, a robust analytical method must be developed to selectively and quantitatively determine iAs content in rice, seaweed, seafood, and marine oils. Herein, we reported and verified the method of combined high-performance liquid chromatography/inductively coupled plasma-mass spectrometry (HPLC/ICP-MS) to determine iAs content in a wide variety of food. The fish oil samples were spiked with different concentrations of the As(III) standard solution, and their iAs analyzes were obtained via extraction procedures using the 1% (w/w) nitric acid (HNO3) solution containing 0.2 M hydrogen peroxide (H2O2) under sonication. The extracts were subsequently analyzed for their As(V) contents using HPLC/ICP-MS with aqueous ammonium carbonate as the mobile phase. The As(III) species had completely oxidized into the As(V) species, which prevented interferences between organic and iAs during chromatography. The method showed good extraction efficiencies (generally >90%) for the iAs samples, and their limits of quantification in fish oil were 0.02 mg/kg. The method was verified via the iAs speciation analytes of rice, seaweed, seafood, and marine oil matrices. The average recoveries for the fortified samples of each matrix ranged from 87.5 to 112.4%, with their coefficients of variation being less than 10%. Surveillance studies were conducted on the iAs contents of food samples purchased from local Taiwanese markets. The results showed that the only Hijiki (Sargassum fusiforme) higher than the maximum limit of the sanitation standard for iAs in seaweed, whereas the remaining samples met their corresponding requirements. This method is quick and straightforward, and it can be applied for the routine analysis of iAs content in a wide variety of food products to ensure public health safety.
期刊介绍:
The journal aims to provide an international platform for scientists, researchers and academicians to promote, share and discuss new findings, current issues, and developments in the different areas of food and drug analysis.
The scope of the Journal includes analytical methodologies and biological activities in relation to food, drugs, cosmetics and traditional Chinese medicine, as well as related disciplines of topical interest to public health professionals.