{"title":"肾内外蛋白质转运和质量控制的机制。","authors":"Jillian L Shaw, Juan Lorenzo Pablo, Anna Greka","doi":"10.1146/annurev-physiol-031522-100639","DOIUrl":null,"url":null,"abstract":"<p><p>Numerous trafficking and quality control pathways evolved to handle the diversity of proteins made by eukaryotic cells. However, at every step along the biosynthetic pathway, there is the potential for quality control system failure. This review focuses on the mechanisms of disrupted proteostasis. Inspired by diseases caused by misfolded proteins in the kidney (mucin 1 and uromodulin), we outline the general principles of protein biosynthesis, delineate the recognition and degradation pathways targeting misfolded proteins, and discuss the role of cargo receptors in protein trafficking and lipid homeostasis. We also discuss technical approaches including live-cell fluorescent microscopy, chemical screens to elucidate trafficking mechanisms, multiplexed single-cell CRISPR screening platforms to systematically delineate mechanisms of proteostasis, and the advancement of novel tools to degrade secretory and membrane-associated proteins. By focusing on components of trafficking that go awry, we highlight ongoing efforts to understand fundamental mechanisms of disrupted proteostasis and implications for the treatment of human proteinopathies.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":"85 ","pages":"407-423"},"PeriodicalIF":15.7000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mechanisms of Protein Trafficking and Quality Control in the Kidney and Beyond.\",\"authors\":\"Jillian L Shaw, Juan Lorenzo Pablo, Anna Greka\",\"doi\":\"10.1146/annurev-physiol-031522-100639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Numerous trafficking and quality control pathways evolved to handle the diversity of proteins made by eukaryotic cells. However, at every step along the biosynthetic pathway, there is the potential for quality control system failure. This review focuses on the mechanisms of disrupted proteostasis. Inspired by diseases caused by misfolded proteins in the kidney (mucin 1 and uromodulin), we outline the general principles of protein biosynthesis, delineate the recognition and degradation pathways targeting misfolded proteins, and discuss the role of cargo receptors in protein trafficking and lipid homeostasis. We also discuss technical approaches including live-cell fluorescent microscopy, chemical screens to elucidate trafficking mechanisms, multiplexed single-cell CRISPR screening platforms to systematically delineate mechanisms of proteostasis, and the advancement of novel tools to degrade secretory and membrane-associated proteins. By focusing on components of trafficking that go awry, we highlight ongoing efforts to understand fundamental mechanisms of disrupted proteostasis and implications for the treatment of human proteinopathies.</p>\",\"PeriodicalId\":8196,\"journal\":{\"name\":\"Annual review of physiology\",\"volume\":\"85 \",\"pages\":\"407-423\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2023-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-physiol-031522-100639\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-physiol-031522-100639","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Mechanisms of Protein Trafficking and Quality Control in the Kidney and Beyond.
Numerous trafficking and quality control pathways evolved to handle the diversity of proteins made by eukaryotic cells. However, at every step along the biosynthetic pathway, there is the potential for quality control system failure. This review focuses on the mechanisms of disrupted proteostasis. Inspired by diseases caused by misfolded proteins in the kidney (mucin 1 and uromodulin), we outline the general principles of protein biosynthesis, delineate the recognition and degradation pathways targeting misfolded proteins, and discuss the role of cargo receptors in protein trafficking and lipid homeostasis. We also discuss technical approaches including live-cell fluorescent microscopy, chemical screens to elucidate trafficking mechanisms, multiplexed single-cell CRISPR screening platforms to systematically delineate mechanisms of proteostasis, and the advancement of novel tools to degrade secretory and membrane-associated proteins. By focusing on components of trafficking that go awry, we highlight ongoing efforts to understand fundamental mechanisms of disrupted proteostasis and implications for the treatment of human proteinopathies.
期刊介绍:
Since 1939, the Annual Review of Physiology has been highlighting significant developments in animal physiology. The journal covers diverse areas, including cardiovascular physiology, cell physiology, ecological, evolutionary, and comparative physiology, endocrinology, gastrointestinal physiology, neurophysiology, renal and electrolyte physiology, respiratory physiology, and special topics.