{"title":"热风焊接大型充气机械臂的研制。","authors":"Namsoo Oh, Hugo Rodrigue","doi":"10.1089/soro.2021.0134","DOIUrl":null,"url":null,"abstract":"<p><p>The manufacturing method of soft pneumatic robots affects their ability to maintain their impermeability when pressurized. Pressurizing them beyond their limits results in leaks or ruptures of the structure. Increasing their size simultaneously increases the tension forces within their structure and reduces their ability to withstand the pressures necessary for them to operate. This article introduces the use of hot air welding to manufacture three-dimensional inflatable elements containing only lap seals which can sustain larger tension forces than the fin seals used in most other inflatable robotic arms. This manufacturing technique is then used to form inflatable joints with 2-degrees of freedom (DOFs), which can be assembled to form 6-DOFs robotic arms. A dual-arm inflatable robot was built using two arms each with a length of 85 cm, was capable of lifting payloads up to 3 kg, had a large range of motion, and was able to lift misaligned boxes using its two arms relying only on friction force by pushing on both sides of the box. The arm concept was then scaled to form a robotic arm with a length of nearly 5 m, which was able to pickup and place a basketball in a basketball hoop from the free-throw line several meters away. The present work advances the state of the art in building large-scale soft robotic arms.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":"10 1","pages":"88-96"},"PeriodicalIF":6.4000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Toward the Development of Large-Scale Inflatable Robotic Arms Using Hot Air Welding.\",\"authors\":\"Namsoo Oh, Hugo Rodrigue\",\"doi\":\"10.1089/soro.2021.0134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The manufacturing method of soft pneumatic robots affects their ability to maintain their impermeability when pressurized. Pressurizing them beyond their limits results in leaks or ruptures of the structure. Increasing their size simultaneously increases the tension forces within their structure and reduces their ability to withstand the pressures necessary for them to operate. This article introduces the use of hot air welding to manufacture three-dimensional inflatable elements containing only lap seals which can sustain larger tension forces than the fin seals used in most other inflatable robotic arms. This manufacturing technique is then used to form inflatable joints with 2-degrees of freedom (DOFs), which can be assembled to form 6-DOFs robotic arms. A dual-arm inflatable robot was built using two arms each with a length of 85 cm, was capable of lifting payloads up to 3 kg, had a large range of motion, and was able to lift misaligned boxes using its two arms relying only on friction force by pushing on both sides of the box. The arm concept was then scaled to form a robotic arm with a length of nearly 5 m, which was able to pickup and place a basketball in a basketball hoop from the free-throw line several meters away. The present work advances the state of the art in building large-scale soft robotic arms.</p>\",\"PeriodicalId\":48685,\"journal\":{\"name\":\"Soft Robotics\",\"volume\":\"10 1\",\"pages\":\"88-96\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1089/soro.2021.0134\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/soro.2021.0134","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
Toward the Development of Large-Scale Inflatable Robotic Arms Using Hot Air Welding.
The manufacturing method of soft pneumatic robots affects their ability to maintain their impermeability when pressurized. Pressurizing them beyond their limits results in leaks or ruptures of the structure. Increasing their size simultaneously increases the tension forces within their structure and reduces their ability to withstand the pressures necessary for them to operate. This article introduces the use of hot air welding to manufacture three-dimensional inflatable elements containing only lap seals which can sustain larger tension forces than the fin seals used in most other inflatable robotic arms. This manufacturing technique is then used to form inflatable joints with 2-degrees of freedom (DOFs), which can be assembled to form 6-DOFs robotic arms. A dual-arm inflatable robot was built using two arms each with a length of 85 cm, was capable of lifting payloads up to 3 kg, had a large range of motion, and was able to lift misaligned boxes using its two arms relying only on friction force by pushing on both sides of the box. The arm concept was then scaled to form a robotic arm with a length of nearly 5 m, which was able to pickup and place a basketball in a basketball hoop from the free-throw line several meters away. The present work advances the state of the art in building large-scale soft robotic arms.
期刊介绍:
Soft Robotics (SoRo) stands as a premier robotics journal, showcasing top-tier, peer-reviewed research on the forefront of soft and deformable robotics. Encompassing flexible electronics, materials science, computer science, and biomechanics, it pioneers breakthroughs in robotic technology capable of safe interaction with living systems and navigating complex environments, natural or human-made.
With a multidisciplinary approach, SoRo integrates advancements in biomedical engineering, biomechanics, mathematical modeling, biopolymer chemistry, computer science, and tissue engineering, offering comprehensive insights into constructing adaptable devices that can undergo significant changes in shape and size. This transformative technology finds critical applications in surgery, assistive healthcare devices, emergency search and rescue, space instrument repair, mine detection, and beyond.