R统计:调查和审查包的估计拉什模型。

IF 1.6 Q2 EDUCATION, SCIENTIFIC DISCIPLINES
John M Linacre
{"title":"R统计:调查和审查包的估计拉什模型。","authors":"John M Linacre","doi":"10.5116/ijme.629d.d88f","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>R Statistics is a comprehensive and widely-used suite of packages for statistical operations. From 27 R packages indexed with the word \"Rasch\", 11 packages capable of Rasch estimation and analysis are identified and critiqued. A commercial Rasch application is included for comparison. Three R data frames are used. A larger and a smaller 0/1 data frame are analyzed with the Dichotomous Rasch Model. A polytomous 0/1/2 data frame is analyzed with the Partial Credit Model. The R packages can all use the same data frame. They are easy to use and mostly fast, though their documentation is generally skimpy. Every package has obvious shortcomings, but the unique features of each package could make them all useful. For general Rasch estimation and fit analysis of dichotomous data, three packages stand out: eRm, TAM and autoRasch. Two packages stand out for polytomous data: TAM and autoRasch.</p>","PeriodicalId":14029,"journal":{"name":"International Journal of Medical Education","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9902209/pdf/","citationCount":"1","resultStr":"{\"title\":\"R Statistics: survey and review of packages for the estimation of Rasch models.\",\"authors\":\"John M Linacre\",\"doi\":\"10.5116/ijme.629d.d88f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Abstract: </strong>R Statistics is a comprehensive and widely-used suite of packages for statistical operations. From 27 R packages indexed with the word \\\"Rasch\\\", 11 packages capable of Rasch estimation and analysis are identified and critiqued. A commercial Rasch application is included for comparison. Three R data frames are used. A larger and a smaller 0/1 data frame are analyzed with the Dichotomous Rasch Model. A polytomous 0/1/2 data frame is analyzed with the Partial Credit Model. The R packages can all use the same data frame. They are easy to use and mostly fast, though their documentation is generally skimpy. Every package has obvious shortcomings, but the unique features of each package could make them all useful. For general Rasch estimation and fit analysis of dichotomous data, three packages stand out: eRm, TAM and autoRasch. Two packages stand out for polytomous data: TAM and autoRasch.</p>\",\"PeriodicalId\":14029,\"journal\":{\"name\":\"International Journal of Medical Education\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9902209/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Medical Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5116/ijme.629d.d88f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5116/ijme.629d.d88f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 1

摘要

摘要:R Statistics是一个全面且广泛使用的统计操作软件包套件。从27个以“Rasch”为索引的R包中,确定并批评了11个能够进行Rasch估计和分析的包。一个商业Rasch应用程序包括比较。使用了三个R数据帧。用二分类Rasch模型对较大和较小的0/1数据帧进行了分析。用部分信用模型分析了一个多分的0/1/2数据帧。所有R包都可以使用相同的数据帧。它们很容易使用,而且大多速度很快,尽管它们的文档通常很简短。每个包都有明显的缺点,但每个包的独特功能可以使它们都有用。对于二分类数据的一般Rasch估计和拟合分析,有三个包脱颖而出:eRm, TAM和autoRasch。有两个包在多域数据中脱颖而出:TAM和autoRasch。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

R Statistics: survey and review of packages for the estimation of Rasch models.

R Statistics: survey and review of packages for the estimation of Rasch models.

R Statistics: survey and review of packages for the estimation of Rasch models.

Abstract: R Statistics is a comprehensive and widely-used suite of packages for statistical operations. From 27 R packages indexed with the word "Rasch", 11 packages capable of Rasch estimation and analysis are identified and critiqued. A commercial Rasch application is included for comparison. Three R data frames are used. A larger and a smaller 0/1 data frame are analyzed with the Dichotomous Rasch Model. A polytomous 0/1/2 data frame is analyzed with the Partial Credit Model. The R packages can all use the same data frame. They are easy to use and mostly fast, though their documentation is generally skimpy. Every package has obvious shortcomings, but the unique features of each package could make them all useful. For general Rasch estimation and fit analysis of dichotomous data, three packages stand out: eRm, TAM and autoRasch. Two packages stand out for polytomous data: TAM and autoRasch.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Medical Education
International Journal of Medical Education EDUCATION, SCIENTIFIC DISCIPLINES-
CiteScore
3.90
自引率
3.20%
发文量
38
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信