Gunawan Setia Prihandana, Tutik Sriani, Muslim Mahardika
{"title":"聚乙烯吡咯烷酮对聚偏氟乙烯/羟基磷灰石混合纳滤膜的影响:表征及过滤性能。","authors":"Gunawan Setia Prihandana, Tutik Sriani, Muslim Mahardika","doi":"10.2174/1872210516666220302095010","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The application of polyvinylidene fluoride (PVDF) as a filtration membrane is limited due to its hydrophobicity. This paper elaborated on the fabrication process of nanofiltration PVDF membrane incorporating various quantities of hydrophilic polyvinylpyrrolidone (PVP) and hydroxyapatite (HA) using a wet phase inversion method to improve its hydrophilicity.</p><p><strong>Methods: </strong>The membrane was fabricated by using the wet phase inversion method. It was then characterized in terms of water permeability, water contact angle, water content, surface energy, and surface porosity. Bacteria and Fe ions filtration was conducted to investigate the membrane filtration performance.</p><p><strong>Results: </strong>The PVDF/PVP/HA-blended membrane showed the highest water permeability (6,165 LMH/Bar), water content (45.2 %), and surface energy (104.1 mN/m) when 2 wt.% of PVP was introduced into the base polymer PVDF. This fabricated membrane, labeled as PVP 2.0, also showed the lowest contact angle (64°) and the highest surface porosity (42%).</p><p><strong>Conclusion: </strong>Overall, the PVP introduction patents into the polymeric membrane doping solution potentially improves membrane hydrophilicity and permeability.</p>","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":"17 1","pages":"51-58"},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of Polyvinylpyrrolidone on Polyvinylidene Fluoride/Hydroxyapatite- Blended Nanofiltration Membranes: Characterization and Filtration Properties.\",\"authors\":\"Gunawan Setia Prihandana, Tutik Sriani, Muslim Mahardika\",\"doi\":\"10.2174/1872210516666220302095010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>The application of polyvinylidene fluoride (PVDF) as a filtration membrane is limited due to its hydrophobicity. This paper elaborated on the fabrication process of nanofiltration PVDF membrane incorporating various quantities of hydrophilic polyvinylpyrrolidone (PVP) and hydroxyapatite (HA) using a wet phase inversion method to improve its hydrophilicity.</p><p><strong>Methods: </strong>The membrane was fabricated by using the wet phase inversion method. It was then characterized in terms of water permeability, water contact angle, water content, surface energy, and surface porosity. Bacteria and Fe ions filtration was conducted to investigate the membrane filtration performance.</p><p><strong>Results: </strong>The PVDF/PVP/HA-blended membrane showed the highest water permeability (6,165 LMH/Bar), water content (45.2 %), and surface energy (104.1 mN/m) when 2 wt.% of PVP was introduced into the base polymer PVDF. This fabricated membrane, labeled as PVP 2.0, also showed the lowest contact angle (64°) and the highest surface porosity (42%).</p><p><strong>Conclusion: </strong>Overall, the PVP introduction patents into the polymeric membrane doping solution potentially improves membrane hydrophilicity and permeability.</p>\",\"PeriodicalId\":49324,\"journal\":{\"name\":\"Recent Patents on Nanotechnology\",\"volume\":\"17 1\",\"pages\":\"51-58\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Patents on Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2174/1872210516666220302095010\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Patents on Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2174/1872210516666220302095010","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of Polyvinylpyrrolidone on Polyvinylidene Fluoride/Hydroxyapatite- Blended Nanofiltration Membranes: Characterization and Filtration Properties.
Introduction: The application of polyvinylidene fluoride (PVDF) as a filtration membrane is limited due to its hydrophobicity. This paper elaborated on the fabrication process of nanofiltration PVDF membrane incorporating various quantities of hydrophilic polyvinylpyrrolidone (PVP) and hydroxyapatite (HA) using a wet phase inversion method to improve its hydrophilicity.
Methods: The membrane was fabricated by using the wet phase inversion method. It was then characterized in terms of water permeability, water contact angle, water content, surface energy, and surface porosity. Bacteria and Fe ions filtration was conducted to investigate the membrane filtration performance.
Results: The PVDF/PVP/HA-blended membrane showed the highest water permeability (6,165 LMH/Bar), water content (45.2 %), and surface energy (104.1 mN/m) when 2 wt.% of PVP was introduced into the base polymer PVDF. This fabricated membrane, labeled as PVP 2.0, also showed the lowest contact angle (64°) and the highest surface porosity (42%).
Conclusion: Overall, the PVP introduction patents into the polymeric membrane doping solution potentially improves membrane hydrophilicity and permeability.
期刊介绍:
Recent Patents on Nanotechnology publishes full-length/mini reviews and research articles that reflect or deal with studies in relation to a patent, application of reported patents in a study, discussion of comparison of results regarding application of a given patent, etc., and also guest edited thematic issues on recent patents in the field of nanotechnology. A selection of important and recent patents on nanotechnology is also included in the journal. The journal is essential reading for all researchers involved in nanotechnology.