摇摆中的一些东西:谢泼德-里塞特滑音对姿势活动和运动的影响。

IF 1.8 4区 心理学 Q3 BIOPHYSICS
Rebecca A Mursic, Stephen Palmisano
{"title":"摇摆中的一些东西:谢泼德-里塞特滑音对姿势活动和运动的影响。","authors":"Rebecca A Mursic,&nbsp;Stephen Palmisano","doi":"10.1163/22134808-bja10081","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated claims of disrupted equilibrium when listening to the Shepard-Risset glissando (which creates an auditory illusion of perpetually ascending/descending pitch). During each trial, 23 participants stood quietly on a force plate for 90 s with their eyes either open or closed (30 s pre-sound, 30 s of sound and 30 s post-sound). Their centre of foot pressure (CoP) was continuously recorded during the trial and a verbal measure of illusory self-motion (i.e., vection) was obtained directly afterwards. As expected, vection was stronger during Shepard-Risset glissandi than during white noise or phase-scrambled auditory control stimuli. Individual differences in auditorily evoked postural sway (observed during sound) were also found to predict the strength of this vection. Importantly, the patterns of sway induced by Shepard-Risset glissandi differed significantly from those during our auditory control stimuli - but only in terms of their temporal dynamics. Since significant sound type differences were not seen in terms of sway magnitude, this stresses the importance of investigating the temporal dynamics of sound-posture interactions.</p>","PeriodicalId":51298,"journal":{"name":"Multisensory Research","volume":"35 7-8","pages":"555-587"},"PeriodicalIF":1.8000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Something in the Sway: Effects of the Shepard-Risset Glissando on Postural Activity and Vection.\",\"authors\":\"Rebecca A Mursic,&nbsp;Stephen Palmisano\",\"doi\":\"10.1163/22134808-bja10081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigated claims of disrupted equilibrium when listening to the Shepard-Risset glissando (which creates an auditory illusion of perpetually ascending/descending pitch). During each trial, 23 participants stood quietly on a force plate for 90 s with their eyes either open or closed (30 s pre-sound, 30 s of sound and 30 s post-sound). Their centre of foot pressure (CoP) was continuously recorded during the trial and a verbal measure of illusory self-motion (i.e., vection) was obtained directly afterwards. As expected, vection was stronger during Shepard-Risset glissandi than during white noise or phase-scrambled auditory control stimuli. Individual differences in auditorily evoked postural sway (observed during sound) were also found to predict the strength of this vection. Importantly, the patterns of sway induced by Shepard-Risset glissandi differed significantly from those during our auditory control stimuli - but only in terms of their temporal dynamics. Since significant sound type differences were not seen in terms of sway magnitude, this stresses the importance of investigating the temporal dynamics of sound-posture interactions.</p>\",\"PeriodicalId\":51298,\"journal\":{\"name\":\"Multisensory Research\",\"volume\":\"35 7-8\",\"pages\":\"555-587\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multisensory Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1163/22134808-bja10081\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multisensory Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1163/22134808-bja10081","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 1

摘要

这项研究调查了在听谢泼德-里塞特滑音(它创造了一种永远上升/下降音高的听觉错觉)时平衡被破坏的说法。在每次试验中,23名参与者安静地站在测力板上90秒,眼睛睁着或闭着(播放前30秒,播放前30秒,播放后30秒)。在试验期间连续记录他们的足压中心(CoP),并在试验后直接获得虚幻自我运动(即向量)的口头测量。正如预期的那样,在谢泼德-里塞特滑音刺激下,向量比在白噪声或相位混乱的听觉控制刺激下更强。听觉诱发的姿势摇摆(在声音中观察到)的个体差异也被发现可以预测这种向量的强度。重要的是,由Shepard-Risset glissandi引起的摇摆模式与我们的听觉控制刺激有很大的不同,但只是在时间动态方面。由于在摇摆幅度方面没有看到显著的声音类型差异,这强调了研究声音-姿势相互作用的时间动态的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Something in the Sway: Effects of the Shepard-Risset Glissando on Postural Activity and Vection.

This study investigated claims of disrupted equilibrium when listening to the Shepard-Risset glissando (which creates an auditory illusion of perpetually ascending/descending pitch). During each trial, 23 participants stood quietly on a force plate for 90 s with their eyes either open or closed (30 s pre-sound, 30 s of sound and 30 s post-sound). Their centre of foot pressure (CoP) was continuously recorded during the trial and a verbal measure of illusory self-motion (i.e., vection) was obtained directly afterwards. As expected, vection was stronger during Shepard-Risset glissandi than during white noise or phase-scrambled auditory control stimuli. Individual differences in auditorily evoked postural sway (observed during sound) were also found to predict the strength of this vection. Importantly, the patterns of sway induced by Shepard-Risset glissandi differed significantly from those during our auditory control stimuli - but only in terms of their temporal dynamics. Since significant sound type differences were not seen in terms of sway magnitude, this stresses the importance of investigating the temporal dynamics of sound-posture interactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Multisensory Research
Multisensory Research BIOPHYSICS-PSYCHOLOGY
CiteScore
3.50
自引率
12.50%
发文量
15
期刊介绍: Multisensory Research is an interdisciplinary archival journal covering all aspects of multisensory processing including the control of action, cognition and attention. Research using any approach to increase our understanding of multisensory perceptual, behavioural, neural and computational mechanisms is encouraged. Empirical, neurophysiological, psychophysical, brain imaging, clinical, developmental, mathematical and computational analyses are welcome. Research will also be considered covering multisensory applications such as sensory substitution, crossmodal methods for delivering sensory information or multisensory approaches to robotics and engineering. Short communications and technical notes that draw attention to new developments will be included, as will reviews and commentaries on current issues. Special issues dealing with specific topics will be announced from time to time. Multisensory Research is a continuation of Seeing and Perceiving, and of Spatial Vision.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信