增强平衡GAN:少数类图像生成。

IF 4.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Gaofeng Huang, Amir Hossein Jafari
{"title":"增强平衡GAN:少数类图像生成。","authors":"Gaofeng Huang,&nbsp;Amir Hossein Jafari","doi":"10.1007/s00521-021-06163-8","DOIUrl":null,"url":null,"abstract":"<p><p>Generative adversarial networks (GANs) are one of the most powerful generative models, but always require a large and balanced dataset to train. Traditional GANs are not applicable to generate minority-class images in a highly imbalanced dataset. Balancing GAN (BAGAN) is proposed to mitigate this problem, but it is unstable when images in different classes look similar, e.g., flowers and cells. In this work, we propose a supervised autoencoder with an intermediate embedding model to disperse the labeled latent vectors. With the enhanced autoencoder initialization, we also build an architecture of BAGAN with gradient penalty (BAGAN-GP). Our proposed model overcomes the unstable issue in original BAGAN and converges faster to high-quality generations. Our model achieves high performance on the imbalanced scale-down version of MNIST Fashion, CIFAR-10, and one small-scale medical image dataset. https://github.com/GH920/improved-bagan-gp.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 7","pages":"5145-5154"},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00521-021-06163-8","citationCount":"32","resultStr":"{\"title\":\"Enhanced balancing GAN: minority-class image generation.\",\"authors\":\"Gaofeng Huang,&nbsp;Amir Hossein Jafari\",\"doi\":\"10.1007/s00521-021-06163-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Generative adversarial networks (GANs) are one of the most powerful generative models, but always require a large and balanced dataset to train. Traditional GANs are not applicable to generate minority-class images in a highly imbalanced dataset. Balancing GAN (BAGAN) is proposed to mitigate this problem, but it is unstable when images in different classes look similar, e.g., flowers and cells. In this work, we propose a supervised autoencoder with an intermediate embedding model to disperse the labeled latent vectors. With the enhanced autoencoder initialization, we also build an architecture of BAGAN with gradient penalty (BAGAN-GP). Our proposed model overcomes the unstable issue in original BAGAN and converges faster to high-quality generations. Our model achieves high performance on the imbalanced scale-down version of MNIST Fashion, CIFAR-10, and one small-scale medical image dataset. https://github.com/GH920/improved-bagan-gp.</p>\",\"PeriodicalId\":49766,\"journal\":{\"name\":\"Neural Computing & Applications\",\"volume\":\"35 7\",\"pages\":\"5145-5154\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00521-021-06163-8\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computing & Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00521-021-06163-8\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-021-06163-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 32

摘要

生成对抗网络(GANs)是最强大的生成模型之一,但总是需要一个大而平衡的数据集来训练。传统的gan不适用于在高度不平衡的数据集中生成少数类图像。平衡GAN (BAGAN)被提出来缓解这个问题,但是当不同类别的图像看起来相似时,例如花和细胞,它是不稳定的。在这项工作中,我们提出了一种带有中间嵌入模型的监督式自编码器来分散标记的潜在向量。通过增强的自编码器初始化,我们还构建了一个带梯度惩罚的BAGAN体系结构(BAGAN- gp)。我们提出的模型克服了原始BAGAN的不稳定问题,更快地收敛到高质量世代。我们的模型在不平衡缩小版的MNIST Fashion、CIFAR-10和一个小规模医学图像数据集上实现了高性能。https://github.com/GH920/improved-bagan-gp。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced balancing GAN: minority-class image generation.

Enhanced balancing GAN: minority-class image generation.

Enhanced balancing GAN: minority-class image generation.

Enhanced balancing GAN: minority-class image generation.

Generative adversarial networks (GANs) are one of the most powerful generative models, but always require a large and balanced dataset to train. Traditional GANs are not applicable to generate minority-class images in a highly imbalanced dataset. Balancing GAN (BAGAN) is proposed to mitigate this problem, but it is unstable when images in different classes look similar, e.g., flowers and cells. In this work, we propose a supervised autoencoder with an intermediate embedding model to disperse the labeled latent vectors. With the enhanced autoencoder initialization, we also build an architecture of BAGAN with gradient penalty (BAGAN-GP). Our proposed model overcomes the unstable issue in original BAGAN and converges faster to high-quality generations. Our model achieves high performance on the imbalanced scale-down version of MNIST Fashion, CIFAR-10, and one small-scale medical image dataset. https://github.com/GH920/improved-bagan-gp.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Computing & Applications
Neural Computing & Applications 工程技术-计算机:人工智能
CiteScore
11.40
自引率
8.30%
发文量
1280
审稿时长
6.9 months
期刊介绍: Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems. All items relevant to building practical systems are within its scope, including but not limited to: -adaptive computing- algorithms- applicable neural networks theory- applied statistics- architectures- artificial intelligence- benchmarks- case histories of innovative applications- fuzzy logic- genetic algorithms- hardware implementations- hybrid intelligent systems- intelligent agents- intelligent control systems- intelligent diagnostics- intelligent forecasting- machine learning- neural networks- neuro-fuzzy systems- pattern recognition- performance measures- self-learning systems- software simulations- supervised and unsupervised learning methods- system engineering and integration. Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信