Pratyasha Singh, Aparupa Pani, Arun S Mujumdar, Shivanand S Shirkole
{"title":"人工智能在植物修复领域应用的新策略。","authors":"Pratyasha Singh, Aparupa Pani, Arun S Mujumdar, Shivanand S Shirkole","doi":"10.1080/15226514.2022.2090500","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial Intelligence (AI) is expected to play a crucial role in the field of phytoremediation and its effective management in monitoring the growth of the plant in different contaminated soils and their phenotype characteristic such as the biomass of plants. This review focuses on recent applications of various AI techniques and remote sensing approaches in the field of phytoremediation to monitor plant growth with relevant morphological parameters using novel sensors, cameras, and associated modern technologies. Novel sensing and various measurement techniques are highlighted. Input parameters are used to develop futuristic models utilizing AI and statistical approaches. Additionally, a brief discussion has been presented on the use of AI techniques to detect metal hyperaccumulation in all parts of the plant, carbon capture, and sequestration along with its effect on food production to ensure food safety and security. This article highlights the application, limitation, and future perspectives of phytoremediation in monitoring the mobility, bioavailability, seasonal variation, effect of temperature on plant growth, and plant response to the heavy metals in soil by using the AI technique. Suggestions are made for future research in this area to analyze which would help to enhance plant growth and improve food security in long run.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":"25 4","pages":"505-523"},"PeriodicalIF":3.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"New strategies on the application of artificial intelligence in the field of phytoremediation.\",\"authors\":\"Pratyasha Singh, Aparupa Pani, Arun S Mujumdar, Shivanand S Shirkole\",\"doi\":\"10.1080/15226514.2022.2090500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial Intelligence (AI) is expected to play a crucial role in the field of phytoremediation and its effective management in monitoring the growth of the plant in different contaminated soils and their phenotype characteristic such as the biomass of plants. This review focuses on recent applications of various AI techniques and remote sensing approaches in the field of phytoremediation to monitor plant growth with relevant morphological parameters using novel sensors, cameras, and associated modern technologies. Novel sensing and various measurement techniques are highlighted. Input parameters are used to develop futuristic models utilizing AI and statistical approaches. Additionally, a brief discussion has been presented on the use of AI techniques to detect metal hyperaccumulation in all parts of the plant, carbon capture, and sequestration along with its effect on food production to ensure food safety and security. This article highlights the application, limitation, and future perspectives of phytoremediation in monitoring the mobility, bioavailability, seasonal variation, effect of temperature on plant growth, and plant response to the heavy metals in soil by using the AI technique. Suggestions are made for future research in this area to analyze which would help to enhance plant growth and improve food security in long run.</p>\",\"PeriodicalId\":14235,\"journal\":{\"name\":\"International Journal of Phytoremediation\",\"volume\":\"25 4\",\"pages\":\"505-523\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Phytoremediation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/15226514.2022.2090500\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2022.2090500","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
New strategies on the application of artificial intelligence in the field of phytoremediation.
Artificial Intelligence (AI) is expected to play a crucial role in the field of phytoremediation and its effective management in monitoring the growth of the plant in different contaminated soils and their phenotype characteristic such as the biomass of plants. This review focuses on recent applications of various AI techniques and remote sensing approaches in the field of phytoremediation to monitor plant growth with relevant morphological parameters using novel sensors, cameras, and associated modern technologies. Novel sensing and various measurement techniques are highlighted. Input parameters are used to develop futuristic models utilizing AI and statistical approaches. Additionally, a brief discussion has been presented on the use of AI techniques to detect metal hyperaccumulation in all parts of the plant, carbon capture, and sequestration along with its effect on food production to ensure food safety and security. This article highlights the application, limitation, and future perspectives of phytoremediation in monitoring the mobility, bioavailability, seasonal variation, effect of temperature on plant growth, and plant response to the heavy metals in soil by using the AI technique. Suggestions are made for future research in this area to analyze which would help to enhance plant growth and improve food security in long run.
期刊介绍:
The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.