面向网络智能的情感分析异常检测系统。

IF 6.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Roberta Maisano, Gian Luca Foresti
{"title":"面向网络智能的情感分析异常检测系统。","authors":"Roberta Maisano,&nbsp;Gian Luca Foresti","doi":"10.1142/S012906572350003X","DOIUrl":null,"url":null,"abstract":"<p><p>Considering the 2030 United Nations intent of world connection, Cyber Intelligence becomes the main area of the human dimension able of inflicting changes in geopolitical dynamics. In cyberspace, the new battlefield is the mind of people including new weapons like abuse of social media with information manipulation, deception by activists and misinformation. In this paper, a Sentiment Analysis system with Anomaly Detection (SAAD) capability is proposed. The system, scalable and modular, uses an OSINT-Deep Learning approach to investigate on social media sentiment in order to predict suspicious anomaly trend in Twitter posts. Anomaly detection is investigated with a new semi-supervised process that is able to detect potentially dangerous situations in critical areas. The main contributions of the paper are the system suitability for working in different areas and domains, the anomaly detection procedure in sentiment context and a time-dependent confusion matrix to address model evaluation with unbalanced dataset. Real experiments and tests were performed on Sahel Region. The detected anomalies in negative sentiment have been checked by experts of Sahel area, proving true links between the models results and real situations observable from the tweets.</p>","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Sentiment Analysis Anomaly Detection System for Cyber Intelligence.\",\"authors\":\"Roberta Maisano,&nbsp;Gian Luca Foresti\",\"doi\":\"10.1142/S012906572350003X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Considering the 2030 United Nations intent of world connection, Cyber Intelligence becomes the main area of the human dimension able of inflicting changes in geopolitical dynamics. In cyberspace, the new battlefield is the mind of people including new weapons like abuse of social media with information manipulation, deception by activists and misinformation. In this paper, a Sentiment Analysis system with Anomaly Detection (SAAD) capability is proposed. The system, scalable and modular, uses an OSINT-Deep Learning approach to investigate on social media sentiment in order to predict suspicious anomaly trend in Twitter posts. Anomaly detection is investigated with a new semi-supervised process that is able to detect potentially dangerous situations in critical areas. The main contributions of the paper are the system suitability for working in different areas and domains, the anomaly detection procedure in sentiment context and a time-dependent confusion matrix to address model evaluation with unbalanced dataset. Real experiments and tests were performed on Sahel Region. The detected anomalies in negative sentiment have been checked by experts of Sahel area, proving true links between the models results and real situations observable from the tweets.</p>\",\"PeriodicalId\":50305,\"journal\":{\"name\":\"International Journal of Neural Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/S012906572350003X\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S012906572350003X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2

摘要

考虑到联合国2030年世界连接的意图,网络智能成为能够改变地缘政治动态的人类维度的主要领域。在网络空间,新的战场是人们的思想,包括滥用社交媒体操纵信息、活动家欺骗和错误信息等新武器。本文提出了一种具有异常检测(SAAD)功能的情感分析系统。该系统具有可扩展性和模块化,使用osint -深度学习方法来调查社交媒体情绪,以预测Twitter帖子中的可疑异常趋势。异常检测研究了一种新的半监督过程,能够检测关键区域的潜在危险情况。本文的主要贡献是系统适合于在不同的领域和领域工作,情感上下文中的异常检测过程和时间相关的混淆矩阵,以解决不平衡数据集的模型评估。在萨赫勒地区进行了实际的实验和测试。萨赫勒地区的专家已经检查了在负面情绪中检测到的异常情况,证明了模型结果与从推文中观察到的真实情况之间的真实联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Sentiment Analysis Anomaly Detection System for Cyber Intelligence.

Considering the 2030 United Nations intent of world connection, Cyber Intelligence becomes the main area of the human dimension able of inflicting changes in geopolitical dynamics. In cyberspace, the new battlefield is the mind of people including new weapons like abuse of social media with information manipulation, deception by activists and misinformation. In this paper, a Sentiment Analysis system with Anomaly Detection (SAAD) capability is proposed. The system, scalable and modular, uses an OSINT-Deep Learning approach to investigate on social media sentiment in order to predict suspicious anomaly trend in Twitter posts. Anomaly detection is investigated with a new semi-supervised process that is able to detect potentially dangerous situations in critical areas. The main contributions of the paper are the system suitability for working in different areas and domains, the anomaly detection procedure in sentiment context and a time-dependent confusion matrix to address model evaluation with unbalanced dataset. Real experiments and tests were performed on Sahel Region. The detected anomalies in negative sentiment have been checked by experts of Sahel area, proving true links between the models results and real situations observable from the tweets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Neural Systems
International Journal of Neural Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
28.80%
发文量
116
审稿时长
24 months
期刊介绍: The International Journal of Neural Systems is a monthly, rigorously peer-reviewed transdisciplinary journal focusing on information processing in both natural and artificial neural systems. Special interests include machine learning, computational neuroscience and neurology. The journal prioritizes innovative, high-impact articles spanning multiple fields, including neurosciences and computer science and engineering. It adopts an open-minded approach to this multidisciplinary field, serving as a platform for novel ideas and enhanced understanding of collective and cooperative phenomena in computationally capable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信