表面形貌和自由能调节干细胞成骨:形状控制金纳米颗粒的影响。

Kamolrat Metavarayuth, Esteban Villarreal, Hui Wang, Qian Wang, Hw, Qw, Mk, Ev, Mk, Mk, Hw, Qw, Mk, Hw, Qw
{"title":"表面形貌和自由能调节干细胞成骨:形状控制金纳米颗粒的影响。","authors":"Kamolrat Metavarayuth,&nbsp;Esteban Villarreal,&nbsp;Hui Wang,&nbsp;Qian Wang,&nbsp;Hw,&nbsp;Qw,&nbsp;Mk,&nbsp;Ev,&nbsp;Mk,&nbsp;Mk,&nbsp;Hw,&nbsp;Qw,&nbsp;Mk,&nbsp;Hw,&nbsp;Qw","doi":"10.12336/biomatertransl.2021.02.006","DOIUrl":null,"url":null,"abstract":"<p><p>The surface free energy of a biomaterial plays an important role in the early stages of cell-biomaterial interactions, profoundly influencing protein adsorption, interfacial water accessibility, and cell attachment on the biomaterial surface. Although multiple approaches have been developed to engineer the surface free energy of biomaterials, systematically tuning their surface free energy without altering other physicochemical properties remains challenging. In this study, we constructed an array of chemically-equivalent surfaces with comparable apparent roughness through assembly of gold nanoparticles adopting various geometrically-distinct shapes but all capped with the same surface ligand, (1-hexadecyl)trimethylammonium chloride, on cell culture substrates. We found that bone marrow stem cells exhibited distinct osteogenic differentiation behaviours when interacting with different types of substrates comprising shape-controlled gold nanoparticles. Our results reveal that bone marrow stem cells are capable of sensing differences in the nanoscale topographical features, which underscores the role of the surface free energy of nanostructured biomaterials in regulating cell responses. The study was approved by Institutional Animal Care and Use Committee, School of Medicine, University of South Carolina.</p>","PeriodicalId":58820,"journal":{"name":"Biomaterials Translational","volume":"2 2","pages":"165-173"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/8c/83/bt-02-02-165.PMC9255781.pdf","citationCount":"3","resultStr":"{\"title\":\"Surface topography and free energy regulate osteogenesis of stem cells: effects of shape-controlled gold nanoparticles.\",\"authors\":\"Kamolrat Metavarayuth,&nbsp;Esteban Villarreal,&nbsp;Hui Wang,&nbsp;Qian Wang,&nbsp;Hw,&nbsp;Qw,&nbsp;Mk,&nbsp;Ev,&nbsp;Mk,&nbsp;Mk,&nbsp;Hw,&nbsp;Qw,&nbsp;Mk,&nbsp;Hw,&nbsp;Qw\",\"doi\":\"10.12336/biomatertransl.2021.02.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The surface free energy of a biomaterial plays an important role in the early stages of cell-biomaterial interactions, profoundly influencing protein adsorption, interfacial water accessibility, and cell attachment on the biomaterial surface. Although multiple approaches have been developed to engineer the surface free energy of biomaterials, systematically tuning their surface free energy without altering other physicochemical properties remains challenging. In this study, we constructed an array of chemically-equivalent surfaces with comparable apparent roughness through assembly of gold nanoparticles adopting various geometrically-distinct shapes but all capped with the same surface ligand, (1-hexadecyl)trimethylammonium chloride, on cell culture substrates. We found that bone marrow stem cells exhibited distinct osteogenic differentiation behaviours when interacting with different types of substrates comprising shape-controlled gold nanoparticles. Our results reveal that bone marrow stem cells are capable of sensing differences in the nanoscale topographical features, which underscores the role of the surface free energy of nanostructured biomaterials in regulating cell responses. The study was approved by Institutional Animal Care and Use Committee, School of Medicine, University of South Carolina.</p>\",\"PeriodicalId\":58820,\"journal\":{\"name\":\"Biomaterials Translational\",\"volume\":\"2 2\",\"pages\":\"165-173\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/8c/83/bt-02-02-165.PMC9255781.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials Translational\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12336/biomatertransl.2021.02.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Translational","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12336/biomatertransl.2021.02.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

生物材料的表面自由能在细胞-生物材料相互作用的早期阶段起着重要的作用,深刻地影响着蛋白质吸附、界面水可及性和细胞在生物材料表面的附着。虽然已经开发了多种方法来设计生物材料的表面自由能,但在不改变其他物理化学性质的情况下系统地调整其表面自由能仍然是一项挑战。在本研究中,我们通过在细胞培养基质上组装具有不同几何形状的金纳米颗粒,构建了一系列具有相当表面粗糙度的化学等效表面,这些表面具有相同的表面配体(1-十六烷基)三甲基氯化铵。我们发现骨髓干细胞在与不同类型的含有形状控制金纳米颗粒的基质相互作用时表现出不同的成骨分化行为。我们的研究结果表明,骨髓干细胞能够感知纳米尺度地形特征的差异,这强调了纳米结构生物材料的表面自由能在调节细胞反应中的作用。该研究得到了南卡罗来纳大学医学院动物护理和使用机构委员会的批准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Surface topography and free energy regulate osteogenesis of stem cells: effects of shape-controlled gold nanoparticles.

Surface topography and free energy regulate osteogenesis of stem cells: effects of shape-controlled gold nanoparticles.

Surface topography and free energy regulate osteogenesis of stem cells: effects of shape-controlled gold nanoparticles.

Surface topography and free energy regulate osteogenesis of stem cells: effects of shape-controlled gold nanoparticles.

The surface free energy of a biomaterial plays an important role in the early stages of cell-biomaterial interactions, profoundly influencing protein adsorption, interfacial water accessibility, and cell attachment on the biomaterial surface. Although multiple approaches have been developed to engineer the surface free energy of biomaterials, systematically tuning their surface free energy without altering other physicochemical properties remains challenging. In this study, we constructed an array of chemically-equivalent surfaces with comparable apparent roughness through assembly of gold nanoparticles adopting various geometrically-distinct shapes but all capped with the same surface ligand, (1-hexadecyl)trimethylammonium chloride, on cell culture substrates. We found that bone marrow stem cells exhibited distinct osteogenic differentiation behaviours when interacting with different types of substrates comprising shape-controlled gold nanoparticles. Our results reveal that bone marrow stem cells are capable of sensing differences in the nanoscale topographical features, which underscores the role of the surface free energy of nanostructured biomaterials in regulating cell responses. The study was approved by Institutional Animal Care and Use Committee, School of Medicine, University of South Carolina.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信