Santiago Veiga, Xiao Qiu, Alfonso Trinidad, Pablo Suz, Bruno Bazuelo, Enrique Navarro
{"title":"水下游泳时起伏踢腿的运动学变化。","authors":"Santiago Veiga, Xiao Qiu, Alfonso Trinidad, Pablo Suz, Bruno Bazuelo, Enrique Navarro","doi":"10.1080/14763141.2023.2177192","DOIUrl":null,"url":null,"abstract":"<p><p>The contribution to total race distances of underwater undulatory swimming (UUS) is increasing at the elite level. However, little is known about the technical modifications during underwater swimming. In the present research, the aim was to compare the kinematic characteristics of competitive swimmers between the first and last kick of UUS. Fifty-four national level swimmers (26 males and 28 females) performed 25 m maximal efforts from a push start, and two sequential video cameras captured the underwater segment. Kicking parameters and segmental kinematics were calculated by means of two-dimensional direct linear transformation algorithms. Dolphin kick performance showed a clear impairment in velocity (η<sup>2</sup> : 0.65), but changes on kicking parameters depended on the swimmer's gender, with males decreasing kicking amplitude (η<sup>2</sup> : 0.25) and females decreasing kicking frequency (η<sup>2</sup> : 0.18) in the last kick. Decline in kicking performance seemed to be more related to the swimmers' body configuration when approaching the water surface (greater trunk inclination and maximal body amplitude in sagittal plane) than to technical modifications in the dolphin kick movement (no changes in the joints range of movement except the hip). Swimmers should control their vertical body amplitude at the end of underwater sections to minimise the decrease in kicking performance.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"906-920"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinematic changes in the undulatory kicking during underwater swimming.\",\"authors\":\"Santiago Veiga, Xiao Qiu, Alfonso Trinidad, Pablo Suz, Bruno Bazuelo, Enrique Navarro\",\"doi\":\"10.1080/14763141.2023.2177192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The contribution to total race distances of underwater undulatory swimming (UUS) is increasing at the elite level. However, little is known about the technical modifications during underwater swimming. In the present research, the aim was to compare the kinematic characteristics of competitive swimmers between the first and last kick of UUS. Fifty-four national level swimmers (26 males and 28 females) performed 25 m maximal efforts from a push start, and two sequential video cameras captured the underwater segment. Kicking parameters and segmental kinematics were calculated by means of two-dimensional direct linear transformation algorithms. Dolphin kick performance showed a clear impairment in velocity (η<sup>2</sup> : 0.65), but changes on kicking parameters depended on the swimmer's gender, with males decreasing kicking amplitude (η<sup>2</sup> : 0.25) and females decreasing kicking frequency (η<sup>2</sup> : 0.18) in the last kick. Decline in kicking performance seemed to be more related to the swimmers' body configuration when approaching the water surface (greater trunk inclination and maximal body amplitude in sagittal plane) than to technical modifications in the dolphin kick movement (no changes in the joints range of movement except the hip). Swimmers should control their vertical body amplitude at the end of underwater sections to minimise the decrease in kicking performance.</p>\",\"PeriodicalId\":49482,\"journal\":{\"name\":\"Sports Biomechanics\",\"volume\":\" \",\"pages\":\"906-920\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sports Biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/14763141.2023.2177192\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/2/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14763141.2023.2177192","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Kinematic changes in the undulatory kicking during underwater swimming.
The contribution to total race distances of underwater undulatory swimming (UUS) is increasing at the elite level. However, little is known about the technical modifications during underwater swimming. In the present research, the aim was to compare the kinematic characteristics of competitive swimmers between the first and last kick of UUS. Fifty-four national level swimmers (26 males and 28 females) performed 25 m maximal efforts from a push start, and two sequential video cameras captured the underwater segment. Kicking parameters and segmental kinematics were calculated by means of two-dimensional direct linear transformation algorithms. Dolphin kick performance showed a clear impairment in velocity (η2 : 0.65), but changes on kicking parameters depended on the swimmer's gender, with males decreasing kicking amplitude (η2 : 0.25) and females decreasing kicking frequency (η2 : 0.18) in the last kick. Decline in kicking performance seemed to be more related to the swimmers' body configuration when approaching the water surface (greater trunk inclination and maximal body amplitude in sagittal plane) than to technical modifications in the dolphin kick movement (no changes in the joints range of movement except the hip). Swimmers should control their vertical body amplitude at the end of underwater sections to minimise the decrease in kicking performance.
期刊介绍:
Sports Biomechanics is the Thomson Reuters listed scientific journal of the International Society of Biomechanics in Sports (ISBS). The journal sets out to generate knowledge to improve human performance and reduce the incidence of injury, and to communicate this knowledge to scientists, coaches, clinicians, teachers, and participants. The target performance realms include not only the conventional areas of sports and exercise, but also fundamental motor skills and other highly specialized human movements such as dance (both sport and artistic).
Sports Biomechanics is unique in its emphasis on a broad biomechanical spectrum of human performance including, but not limited to, technique, skill acquisition, training, strength and conditioning, exercise, coaching, teaching, equipment, modeling and simulation, measurement, and injury prevention and rehabilitation. As well as maintaining scientific rigour, there is a strong editorial emphasis on ''reader friendliness''. By emphasising the practical implications and applications of research, the journal seeks to benefit practitioners directly.
Sports Biomechanics publishes papers in four sections: Original Research, Reviews, Teaching, and Methods and Theoretical Perspectives.