GuangWei Zhou, PuXiu Shen, Yu Sun, Xing Zhang, ChenBo Yan, JingCheng Yu, Fang Liu, DeXin Yang, LiXin Deng, EnBu Xu, YiZhen Wang, Lin Liu, Chao Tong, Tao Sun, XueBing Wang
{"title":"脂多糖体外诱导的牛子宫内膜上皮细胞转录组图谱。","authors":"GuangWei Zhou, PuXiu Shen, Yu Sun, Xing Zhang, ChenBo Yan, JingCheng Yu, Fang Liu, DeXin Yang, LiXin Deng, EnBu Xu, YiZhen Wang, Lin Liu, Chao Tong, Tao Sun, XueBing Wang","doi":"10.1080/10495398.2023.2174876","DOIUrl":null,"url":null,"abstract":"<p><p>Endometritis is an inflammation of the surface of the endometrium that does not penetrate the submucosa and can cause infertility and increase the elimination rate in cows. Endometrial epithelial cells are the first barrier of the endometrium against foreign stimuli and bacterial infection. Understanding the genetic changes in stimulated endometrial epithelial cells will help in the efforts to prevent and treat endometritis. This study investigated changes in bovine endometrial epithelial (BEEC) gene expression induced by lipopolysaccharide (LPS)-induced inflammation and compared transcriptome-wide gene changes between LPS- and phosphate-buffered saline (PBS)- treated BEECs by RNA sequencing. Compared with the PBS group, the LPS group showed 60 differentially expressed genes (DEGs) (36 upregulated, 24 downregulated). Gene Ontology enrichment analysis revealed that most enrichment occurred during CXCR chemokine receptor binding, inflammatory response, and neutrophil migration. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed DEGs mainly concentrated in cytokine-cytokine receptor interactions; IL-17, tumor necrosis factor, NOD-like receptor, chemokine, Toll-like receptor, and nuclear factor-κB signaling pathways; and the cytoplasmic DNA sensing pathway. Moreover, results revealed that cytokines <i>SAA3</i> and <i>HP</i> increased significantly after LPS treatment. These effects of LPS on BEECs transcriptome and the molecular mechanism of endometritis provide a basis for improved clinical treatment and novel drug development.</p>","PeriodicalId":7836,"journal":{"name":"Animal Biotechnology","volume":" ","pages":"4588-4599"},"PeriodicalIF":1.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcriptome profiling of bovine endometrial epithelial cells induced by lipopolysaccharides <i>in vitro</i>.\",\"authors\":\"GuangWei Zhou, PuXiu Shen, Yu Sun, Xing Zhang, ChenBo Yan, JingCheng Yu, Fang Liu, DeXin Yang, LiXin Deng, EnBu Xu, YiZhen Wang, Lin Liu, Chao Tong, Tao Sun, XueBing Wang\",\"doi\":\"10.1080/10495398.2023.2174876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Endometritis is an inflammation of the surface of the endometrium that does not penetrate the submucosa and can cause infertility and increase the elimination rate in cows. Endometrial epithelial cells are the first barrier of the endometrium against foreign stimuli and bacterial infection. Understanding the genetic changes in stimulated endometrial epithelial cells will help in the efforts to prevent and treat endometritis. This study investigated changes in bovine endometrial epithelial (BEEC) gene expression induced by lipopolysaccharide (LPS)-induced inflammation and compared transcriptome-wide gene changes between LPS- and phosphate-buffered saline (PBS)- treated BEECs by RNA sequencing. Compared with the PBS group, the LPS group showed 60 differentially expressed genes (DEGs) (36 upregulated, 24 downregulated). Gene Ontology enrichment analysis revealed that most enrichment occurred during CXCR chemokine receptor binding, inflammatory response, and neutrophil migration. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed DEGs mainly concentrated in cytokine-cytokine receptor interactions; IL-17, tumor necrosis factor, NOD-like receptor, chemokine, Toll-like receptor, and nuclear factor-κB signaling pathways; and the cytoplasmic DNA sensing pathway. Moreover, results revealed that cytokines <i>SAA3</i> and <i>HP</i> increased significantly after LPS treatment. These effects of LPS on BEECs transcriptome and the molecular mechanism of endometritis provide a basis for improved clinical treatment and novel drug development.</p>\",\"PeriodicalId\":7836,\"journal\":{\"name\":\"Animal Biotechnology\",\"volume\":\" \",\"pages\":\"4588-4599\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Biotechnology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/10495398.2023.2174876\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/2/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/10495398.2023.2174876","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Transcriptome profiling of bovine endometrial epithelial cells induced by lipopolysaccharides in vitro.
Endometritis is an inflammation of the surface of the endometrium that does not penetrate the submucosa and can cause infertility and increase the elimination rate in cows. Endometrial epithelial cells are the first barrier of the endometrium against foreign stimuli and bacterial infection. Understanding the genetic changes in stimulated endometrial epithelial cells will help in the efforts to prevent and treat endometritis. This study investigated changes in bovine endometrial epithelial (BEEC) gene expression induced by lipopolysaccharide (LPS)-induced inflammation and compared transcriptome-wide gene changes between LPS- and phosphate-buffered saline (PBS)- treated BEECs by RNA sequencing. Compared with the PBS group, the LPS group showed 60 differentially expressed genes (DEGs) (36 upregulated, 24 downregulated). Gene Ontology enrichment analysis revealed that most enrichment occurred during CXCR chemokine receptor binding, inflammatory response, and neutrophil migration. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed DEGs mainly concentrated in cytokine-cytokine receptor interactions; IL-17, tumor necrosis factor, NOD-like receptor, chemokine, Toll-like receptor, and nuclear factor-κB signaling pathways; and the cytoplasmic DNA sensing pathway. Moreover, results revealed that cytokines SAA3 and HP increased significantly after LPS treatment. These effects of LPS on BEECs transcriptome and the molecular mechanism of endometritis provide a basis for improved clinical treatment and novel drug development.
期刊介绍:
Biotechnology can be defined as any technique that uses living organisms (or parts of organisms like cells, genes, proteins) to make or modify products, to improve plants, animals or microorganisms for a specific use. Animal Biotechnology publishes research on the identification and manipulation of genes and their products, stressing applications in domesticated animals. The journal publishes full-length articles and short research communications, as well as comprehensive reviews. The journal also provides a forum for regulatory or scientific issues related to cell and molecular biology applied to animal biotechnology.
Submissions on the following topics are particularly welcome:
- Applied microbiology, immunogenetics and antibiotic resistance
- Genome engineering and animal models
- Comparative genomics
- Gene editing and CRISPRs
- Reproductive biotechnologies
- Synthetic biology and design of new genomes