Xin Liu , Weipin Niu , Shuqing Zhao , Wenjuan Zhang , Ying Zhao , Jing Li
{"title":"Piezo1:纤维疾病的潜在新治疗靶点。","authors":"Xin Liu , Weipin Niu , Shuqing Zhao , Wenjuan Zhang , Ying Zhao , Jing Li","doi":"10.1016/j.pbiomolbio.2023.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>Fibrosis is a pathological process that occurs in various organs, characterized by excessive deposition of extracellular matrix (ECM), leading to structural damage and, in severe cases, organ failure. Within the fibrotic microenvironment, mechanical forces play a crucial role in shaping cell behavior and function, yet the precise molecular mechanisms underlying how cells sense and transmit these mechanical cues, as well as the physical aspects of fibrosis progression, remain less understood. Piezo1, a mechanosensitive ion channel protein, serves as a pivotal mediator, converting mechanical stimuli into electrical or chemical signals. Accumulating evidence suggests that Piezo1 plays a central role in ECM formation and hemodynamics in the mechanical transduction of fibrosis expansion. This review provides an overview of the current understanding of the role of Piezo1 in fibrosis progression, encompassing conditions such as myocardial fibrosis, pulmonary fibrosis, renal fibrosis, and other fibrotic diseases. The main goal is to pave the way for potential clinical applications in the field of fibrotic diseases.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Piezo1:the potential new therapeutic target for fibrotic diseases\",\"authors\":\"Xin Liu , Weipin Niu , Shuqing Zhao , Wenjuan Zhang , Ying Zhao , Jing Li\",\"doi\":\"10.1016/j.pbiomolbio.2023.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fibrosis is a pathological process that occurs in various organs, characterized by excessive deposition of extracellular matrix (ECM), leading to structural damage and, in severe cases, organ failure. Within the fibrotic microenvironment, mechanical forces play a crucial role in shaping cell behavior and function, yet the precise molecular mechanisms underlying how cells sense and transmit these mechanical cues, as well as the physical aspects of fibrosis progression, remain less understood. Piezo1, a mechanosensitive ion channel protein, serves as a pivotal mediator, converting mechanical stimuli into electrical or chemical signals. Accumulating evidence suggests that Piezo1 plays a central role in ECM formation and hemodynamics in the mechanical transduction of fibrosis expansion. This review provides an overview of the current understanding of the role of Piezo1 in fibrosis progression, encompassing conditions such as myocardial fibrosis, pulmonary fibrosis, renal fibrosis, and other fibrotic diseases. The main goal is to pave the way for potential clinical applications in the field of fibrotic diseases.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079610723000822\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079610723000822","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Piezo1:the potential new therapeutic target for fibrotic diseases
Fibrosis is a pathological process that occurs in various organs, characterized by excessive deposition of extracellular matrix (ECM), leading to structural damage and, in severe cases, organ failure. Within the fibrotic microenvironment, mechanical forces play a crucial role in shaping cell behavior and function, yet the precise molecular mechanisms underlying how cells sense and transmit these mechanical cues, as well as the physical aspects of fibrosis progression, remain less understood. Piezo1, a mechanosensitive ion channel protein, serves as a pivotal mediator, converting mechanical stimuli into electrical or chemical signals. Accumulating evidence suggests that Piezo1 plays a central role in ECM formation and hemodynamics in the mechanical transduction of fibrosis expansion. This review provides an overview of the current understanding of the role of Piezo1 in fibrosis progression, encompassing conditions such as myocardial fibrosis, pulmonary fibrosis, renal fibrosis, and other fibrotic diseases. The main goal is to pave the way for potential clinical applications in the field of fibrotic diseases.