在UFDF期间用MIR光谱在线监测蛋白质浓度

IF 3.9 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Adrianna Milewska, Géraldine Baekelandt, Sarra Boutaieb, Vitalii Mozin, Andrew Falconbridge
{"title":"在UFDF期间用MIR光谱在线监测蛋白质浓度","authors":"Adrianna Milewska,&nbsp;Géraldine Baekelandt,&nbsp;Sarra Boutaieb,&nbsp;Vitalii Mozin,&nbsp;Andrew Falconbridge","doi":"10.1002/elsc.202200050","DOIUrl":null,"url":null,"abstract":"<p>Rapid increase of product titers in upstream processes has presented challenges for downstream processing, where purification costs increase linearly with the increase of the product yield. Hence, innovative solutions are becoming increasingly popular. Process Analytical Technology (PAT) tools, such as spectroscopic techniques, are on the rise due to their capacity to provide real-time, precise analytics. This ensures consistent product quality and increased process understanding, as well as process control. Mid-infrared spectroscopy (MIR) has emerged as a highly promising technique within recent years, owing to its ability to monitor several critical process parameters at the same time and unchallenging spectral analysis and data interpretation. For in-line monitoring, Attenuated Total Reflectance—Fourier Transform Infrared Spectroscopy (ATR-FTIR) is a method of choice, as it enables reliable measurements in a liquid environment, even though water absorption bands are present in the region of interest. Here, we present MIR spectroscopy as a monitoring tool of critical process parameters in ultrafiltration/diafiltration (UFDF). MIR spectrometer was integrated in the UFDF process in an in-line fashion through a single-use flow cell containing a single bounce silicon ATR crystal. The results indicate that the one-point calibration algorithm applied to the MIR spectra, predicts highly accurate protein concentrations, as compared with validated offline analytical methods.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"23 2","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202200050","citationCount":"3","resultStr":"{\"title\":\"In-line monitoring of protein concentration with MIR spectroscopy during UFDF\",\"authors\":\"Adrianna Milewska,&nbsp;Géraldine Baekelandt,&nbsp;Sarra Boutaieb,&nbsp;Vitalii Mozin,&nbsp;Andrew Falconbridge\",\"doi\":\"10.1002/elsc.202200050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rapid increase of product titers in upstream processes has presented challenges for downstream processing, where purification costs increase linearly with the increase of the product yield. Hence, innovative solutions are becoming increasingly popular. Process Analytical Technology (PAT) tools, such as spectroscopic techniques, are on the rise due to their capacity to provide real-time, precise analytics. This ensures consistent product quality and increased process understanding, as well as process control. Mid-infrared spectroscopy (MIR) has emerged as a highly promising technique within recent years, owing to its ability to monitor several critical process parameters at the same time and unchallenging spectral analysis and data interpretation. For in-line monitoring, Attenuated Total Reflectance—Fourier Transform Infrared Spectroscopy (ATR-FTIR) is a method of choice, as it enables reliable measurements in a liquid environment, even though water absorption bands are present in the region of interest. Here, we present MIR spectroscopy as a monitoring tool of critical process parameters in ultrafiltration/diafiltration (UFDF). MIR spectrometer was integrated in the UFDF process in an in-line fashion through a single-use flow cell containing a single bounce silicon ATR crystal. The results indicate that the one-point calibration algorithm applied to the MIR spectra, predicts highly accurate protein concentrations, as compared with validated offline analytical methods.</p>\",\"PeriodicalId\":11678,\"journal\":{\"name\":\"Engineering in Life Sciences\",\"volume\":\"23 2\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2022-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202200050\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering in Life Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/elsc.202200050\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering in Life Sciences","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elsc.202200050","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

上游工艺中产品滴度的快速增加对下游工艺提出了挑战,其中纯化成本随着产品产量的增加而线性增加。因此,创新的解决方案正变得越来越受欢迎。过程分析技术(PAT)工具,如光谱技术,由于其提供实时、精确分析的能力,正在崛起。这确保了一致的产品质量和增加的过程理解,以及过程控制。中红外光谱(MIR)近年来已经成为一种非常有前途的技术,因为它能够同时监测几个关键的过程参数,并且具有简单的光谱分析和数据解释能力。对于在线监测,衰减全反射-傅里叶变换红外光谱(ATR-FTIR)是一种选择,因为它可以在液体环境中进行可靠的测量,即使在感兴趣的区域存在吸水带。在这里,我们提出MIR光谱作为超滤/滤(UFDF)关键工艺参数的监测工具。MIR光谱仪通过包含单个反弹硅ATR晶体的一次性流动池以在线方式集成在UFDF过程中。结果表明,与经过验证的离线分析方法相比,应用于MIR光谱的单点校准算法预测的蛋白质浓度非常准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In-line monitoring of protein concentration with MIR spectroscopy during UFDF

In-line monitoring of protein concentration with MIR spectroscopy during UFDF

Rapid increase of product titers in upstream processes has presented challenges for downstream processing, where purification costs increase linearly with the increase of the product yield. Hence, innovative solutions are becoming increasingly popular. Process Analytical Technology (PAT) tools, such as spectroscopic techniques, are on the rise due to their capacity to provide real-time, precise analytics. This ensures consistent product quality and increased process understanding, as well as process control. Mid-infrared spectroscopy (MIR) has emerged as a highly promising technique within recent years, owing to its ability to monitor several critical process parameters at the same time and unchallenging spectral analysis and data interpretation. For in-line monitoring, Attenuated Total Reflectance—Fourier Transform Infrared Spectroscopy (ATR-FTIR) is a method of choice, as it enables reliable measurements in a liquid environment, even though water absorption bands are present in the region of interest. Here, we present MIR spectroscopy as a monitoring tool of critical process parameters in ultrafiltration/diafiltration (UFDF). MIR spectrometer was integrated in the UFDF process in an in-line fashion through a single-use flow cell containing a single bounce silicon ATR crystal. The results indicate that the one-point calibration algorithm applied to the MIR spectra, predicts highly accurate protein concentrations, as compared with validated offline analytical methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering in Life Sciences
Engineering in Life Sciences 工程技术-生物工程与应用微生物
CiteScore
6.40
自引率
3.70%
发文量
81
审稿时长
3 months
期刊介绍: Engineering in Life Sciences (ELS) focuses on engineering principles and innovations in life sciences and biotechnology. Life sciences and biotechnology covered in ELS encompass the use of biomolecules (e.g. proteins/enzymes), cells (microbial, plant and mammalian origins) and biomaterials for biosynthesis, biotransformation, cell-based treatment and bio-based solutions in industrial and pharmaceutical biotechnologies as well as in biomedicine. ELS especially aims to promote interdisciplinary collaborations among biologists, biotechnologists and engineers for quantitative understanding and holistic engineering (design-built-test) of biological parts and processes in the different application areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信