{"title":"高氧暴露可上调新生大鼠肺Dvl-1并激活Wnt/β-catenin信号通路。","authors":"Yuting Zhu, Yawen Li, Weilai Jin, Zhengying Li, Le Zhang, Yuanyuan Fang, Yanyu Zhang","doi":"10.1186/s12860-023-00465-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Bronchopulmonary dysplasia is a serious and lifelong pulmonary disease in premature neonates that influences around one-quarter of premature newborns. The wingless-related integration site /β-catenin signaling pathway, which is abnormally activated in the lungs with pulmonary fibrosis, affects cell differentiation and lung development.</p><p><strong>Methods: </strong>Newborn rats were subjected to hyperoxia exposure. Histopathological changes to the lungs were evaluated through immunohistochemistry, and the activation of disheveled and Wnt /β-catenin signaling pathway components was assessed by Western blotting and real-time PCR. The abilities of proliferation, apoptosis and migration were detected by Cell Counting Kit-8, flow cytometry and scratch wound assay, respectively.</p><p><strong>Results: </strong>Contrasting with normoxic lungs, hyperoxia-exposed lungs demonstrated larger alveoli, fewer alveoli and thicker alveolar septa. Superoxide dismutase activity was significantly decreased (7th day: P < 0.05; 14th day: P < 0.01) and malondialdehyde significantly increased (7th day: P < 0.05; 14th day: P < 0.01) after hyperoxia exposure. Protein and mRNA expression levels of β-catenin, Dvl-1, CTNNBL1 and cyclin D1 were significantly upregulated by hyperoxia exposure on 7th day (P < 0.01) and 14th day (P < 0.01). In hyperoxic conditions, Dvl-l downregulation and Dvl-l downregulation + MSAB treatment significantly increased the proliferation rates, decreased the apoptosis rates and improved the ability of cell migration. In hyperoxic conditions, Dvl-l downregulation could decrease the mRNA expression levels of GSK3β, β-catenin, CTNNBL1 and cyclin D1 and decrease the protein relative expression levels of GSK3β, p-GSK3β, β-catenin, CTNNBL1 and cyclin D1.</p><p><strong>Conclusions: </strong>We confirmed the positive role of Dvl-1 and the Wnt/β-catenin signaling pathway in promoting BPD in hyperoxia conditions and provided a promising therapeutic target.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9893620/pdf/","citationCount":"1","resultStr":"{\"title\":\"Hyperoxia exposure upregulates Dvl-1 and activates Wnt/β-catenin signaling pathway in newborn rat lung.\",\"authors\":\"Yuting Zhu, Yawen Li, Weilai Jin, Zhengying Li, Le Zhang, Yuanyuan Fang, Yanyu Zhang\",\"doi\":\"10.1186/s12860-023-00465-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Bronchopulmonary dysplasia is a serious and lifelong pulmonary disease in premature neonates that influences around one-quarter of premature newborns. The wingless-related integration site /β-catenin signaling pathway, which is abnormally activated in the lungs with pulmonary fibrosis, affects cell differentiation and lung development.</p><p><strong>Methods: </strong>Newborn rats were subjected to hyperoxia exposure. Histopathological changes to the lungs were evaluated through immunohistochemistry, and the activation of disheveled and Wnt /β-catenin signaling pathway components was assessed by Western blotting and real-time PCR. The abilities of proliferation, apoptosis and migration were detected by Cell Counting Kit-8, flow cytometry and scratch wound assay, respectively.</p><p><strong>Results: </strong>Contrasting with normoxic lungs, hyperoxia-exposed lungs demonstrated larger alveoli, fewer alveoli and thicker alveolar septa. Superoxide dismutase activity was significantly decreased (7th day: P < 0.05; 14th day: P < 0.01) and malondialdehyde significantly increased (7th day: P < 0.05; 14th day: P < 0.01) after hyperoxia exposure. Protein and mRNA expression levels of β-catenin, Dvl-1, CTNNBL1 and cyclin D1 were significantly upregulated by hyperoxia exposure on 7th day (P < 0.01) and 14th day (P < 0.01). In hyperoxic conditions, Dvl-l downregulation and Dvl-l downregulation + MSAB treatment significantly increased the proliferation rates, decreased the apoptosis rates and improved the ability of cell migration. In hyperoxic conditions, Dvl-l downregulation could decrease the mRNA expression levels of GSK3β, β-catenin, CTNNBL1 and cyclin D1 and decrease the protein relative expression levels of GSK3β, p-GSK3β, β-catenin, CTNNBL1 and cyclin D1.</p><p><strong>Conclusions: </strong>We confirmed the positive role of Dvl-1 and the Wnt/β-catenin signaling pathway in promoting BPD in hyperoxia conditions and provided a promising therapeutic target.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9893620/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12860-023-00465-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12860-023-00465-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Hyperoxia exposure upregulates Dvl-1 and activates Wnt/β-catenin signaling pathway in newborn rat lung.
Background: Bronchopulmonary dysplasia is a serious and lifelong pulmonary disease in premature neonates that influences around one-quarter of premature newborns. The wingless-related integration site /β-catenin signaling pathway, which is abnormally activated in the lungs with pulmonary fibrosis, affects cell differentiation and lung development.
Methods: Newborn rats were subjected to hyperoxia exposure. Histopathological changes to the lungs were evaluated through immunohistochemistry, and the activation of disheveled and Wnt /β-catenin signaling pathway components was assessed by Western blotting and real-time PCR. The abilities of proliferation, apoptosis and migration were detected by Cell Counting Kit-8, flow cytometry and scratch wound assay, respectively.
Results: Contrasting with normoxic lungs, hyperoxia-exposed lungs demonstrated larger alveoli, fewer alveoli and thicker alveolar septa. Superoxide dismutase activity was significantly decreased (7th day: P < 0.05; 14th day: P < 0.01) and malondialdehyde significantly increased (7th day: P < 0.05; 14th day: P < 0.01) after hyperoxia exposure. Protein and mRNA expression levels of β-catenin, Dvl-1, CTNNBL1 and cyclin D1 were significantly upregulated by hyperoxia exposure on 7th day (P < 0.01) and 14th day (P < 0.01). In hyperoxic conditions, Dvl-l downregulation and Dvl-l downregulation + MSAB treatment significantly increased the proliferation rates, decreased the apoptosis rates and improved the ability of cell migration. In hyperoxic conditions, Dvl-l downregulation could decrease the mRNA expression levels of GSK3β, β-catenin, CTNNBL1 and cyclin D1 and decrease the protein relative expression levels of GSK3β, p-GSK3β, β-catenin, CTNNBL1 and cyclin D1.
Conclusions: We confirmed the positive role of Dvl-1 and the Wnt/β-catenin signaling pathway in promoting BPD in hyperoxia conditions and provided a promising therapeutic target.