{"title":"在使用单侧下肢假体的个体中,同时验证惯性测量单元到运动捕捉的试点案例系列。","authors":"M G Finco, Rita M Patterson, Sarah C Moudy","doi":"10.1177/20556683231182322","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Inertial measurement units (IMUs) may be viable options to collect gait data in clinics. This study compared IMU to motion capture data in individuals who use unilateral lower-limb prostheses.</p><p><strong>Methods: </strong>Participants walked with lower-body IMUs and reflective markers in a motion analysis space. Sagittal plane hip, knee, and ankle waveforms were extracted for the entire gait cycle. Discrete points of peak flexion, peak extension, and range of motion were extracted from the waveforms. Stance times were also extracted to assess the IMU software's accuracy at detecting gait events. IMU and motion capture-derived data were compared using absolute differences and root mean square error (RMSE).</p><p><strong>Results: </strong>Five individuals (<i>n</i> = 3 transtibial; <i>n</i> = 2 transfemoral) participated. IMU prosthetic limb data was similar to motion capture (RMSE: waveform ≤4.65°; discrete point ≤9.04°; stance ≤0.03s). However, one transfemoral participant had larger differences at the microprocessor knee joint (RMSE: waveform ≤15.64°; discrete ≤29.21°) from IMU magnetometer interference. Intact limbs tended to have minimal differences between IMU and motion capture data (RMSE: waveform ≤6.33°; discrete ≤9.87°; stance ≤0.04s).</p><p><strong>Conclusion: </strong>Findings from this pilot study suggest IMUs have the potential to collect data similar to motion capture systems in sagittal plane kinematics and stance time.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/10/d4/10.1177_20556683231182322.PMC10334000.pdf","citationCount":"0","resultStr":"{\"title\":\"A pilot case series for concurrent validation of inertial measurement units to motion capture in individuals who use unilateral lower-limb prostheses.\",\"authors\":\"M G Finco, Rita M Patterson, Sarah C Moudy\",\"doi\":\"10.1177/20556683231182322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Inertial measurement units (IMUs) may be viable options to collect gait data in clinics. This study compared IMU to motion capture data in individuals who use unilateral lower-limb prostheses.</p><p><strong>Methods: </strong>Participants walked with lower-body IMUs and reflective markers in a motion analysis space. Sagittal plane hip, knee, and ankle waveforms were extracted for the entire gait cycle. Discrete points of peak flexion, peak extension, and range of motion were extracted from the waveforms. Stance times were also extracted to assess the IMU software's accuracy at detecting gait events. IMU and motion capture-derived data were compared using absolute differences and root mean square error (RMSE).</p><p><strong>Results: </strong>Five individuals (<i>n</i> = 3 transtibial; <i>n</i> = 2 transfemoral) participated. IMU prosthetic limb data was similar to motion capture (RMSE: waveform ≤4.65°; discrete point ≤9.04°; stance ≤0.03s). However, one transfemoral participant had larger differences at the microprocessor knee joint (RMSE: waveform ≤15.64°; discrete ≤29.21°) from IMU magnetometer interference. Intact limbs tended to have minimal differences between IMU and motion capture data (RMSE: waveform ≤6.33°; discrete ≤9.87°; stance ≤0.04s).</p><p><strong>Conclusion: </strong>Findings from this pilot study suggest IMUs have the potential to collect data similar to motion capture systems in sagittal plane kinematics and stance time.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/10/d4/10.1177_20556683231182322.PMC10334000.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/20556683231182322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/20556683231182322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A pilot case series for concurrent validation of inertial measurement units to motion capture in individuals who use unilateral lower-limb prostheses.
Introduction: Inertial measurement units (IMUs) may be viable options to collect gait data in clinics. This study compared IMU to motion capture data in individuals who use unilateral lower-limb prostheses.
Methods: Participants walked with lower-body IMUs and reflective markers in a motion analysis space. Sagittal plane hip, knee, and ankle waveforms were extracted for the entire gait cycle. Discrete points of peak flexion, peak extension, and range of motion were extracted from the waveforms. Stance times were also extracted to assess the IMU software's accuracy at detecting gait events. IMU and motion capture-derived data were compared using absolute differences and root mean square error (RMSE).
Results: Five individuals (n = 3 transtibial; n = 2 transfemoral) participated. IMU prosthetic limb data was similar to motion capture (RMSE: waveform ≤4.65°; discrete point ≤9.04°; stance ≤0.03s). However, one transfemoral participant had larger differences at the microprocessor knee joint (RMSE: waveform ≤15.64°; discrete ≤29.21°) from IMU magnetometer interference. Intact limbs tended to have minimal differences between IMU and motion capture data (RMSE: waveform ≤6.33°; discrete ≤9.87°; stance ≤0.04s).
Conclusion: Findings from this pilot study suggest IMUs have the potential to collect data similar to motion capture systems in sagittal plane kinematics and stance time.