{"title":"听力损失,铅(Pb)暴露和噪音:耳毒性探索的声音方法。","authors":"Krystin Carlson, Richard L Neitzel","doi":"10.1080/10937404.2018.1562391","DOIUrl":null,"url":null,"abstract":"<p><p>To determine the state of the research on ototoxic properties of Pb, evaluate possible synergistic effects with concurrent noise exposure, and identify opportunities to improve future research, we performed a review of the peer-reviewed literature to identify studies examining auditory damage due to Pb over the past 50 years. Thirty-eight studies (14 animal and 24 human) were reviewed. Of these, 24 suggested potential ototoxicity due to Pb exposure, while 14 found no evidence of ototoxicity. More animal studies are needed, especially those investigating Pb exposure levels that are occupationally and environmentally relevant to humans. Further investigations into potential interactions of Pb in the auditory system with other hazards and compounds that elicit ototoxicity are also needed in animal models. To better assess the effects of Pb exposure on the human auditory system and the possibility of a synergism with noise, future epidemiological studies need to carefully consider and address four main areas of uncertainty: (1) hearing examination and quantification of hearing loss, (2) Pb exposure evaluation, (3) noise exposure evaluation, and (4) the personal characteristics of those exposed. Two potentially confounding factors, protective factors and mixtures of ototoxicants, also warrant further exploration.</p>","PeriodicalId":49971,"journal":{"name":"Journal of Toxicology and Environmental Health-Part B-Critical Reviews","volume":"21 5","pages":"335-355"},"PeriodicalIF":6.4000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10937404.2018.1562391","citationCount":"20","resultStr":"{\"title\":\"Hearing loss, lead (Pb) exposure, and noise: a sound approach to ototoxicity exploration.\",\"authors\":\"Krystin Carlson, Richard L Neitzel\",\"doi\":\"10.1080/10937404.2018.1562391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To determine the state of the research on ototoxic properties of Pb, evaluate possible synergistic effects with concurrent noise exposure, and identify opportunities to improve future research, we performed a review of the peer-reviewed literature to identify studies examining auditory damage due to Pb over the past 50 years. Thirty-eight studies (14 animal and 24 human) were reviewed. Of these, 24 suggested potential ototoxicity due to Pb exposure, while 14 found no evidence of ototoxicity. More animal studies are needed, especially those investigating Pb exposure levels that are occupationally and environmentally relevant to humans. Further investigations into potential interactions of Pb in the auditory system with other hazards and compounds that elicit ototoxicity are also needed in animal models. To better assess the effects of Pb exposure on the human auditory system and the possibility of a synergism with noise, future epidemiological studies need to carefully consider and address four main areas of uncertainty: (1) hearing examination and quantification of hearing loss, (2) Pb exposure evaluation, (3) noise exposure evaluation, and (4) the personal characteristics of those exposed. Two potentially confounding factors, protective factors and mixtures of ototoxicants, also warrant further exploration.</p>\",\"PeriodicalId\":49971,\"journal\":{\"name\":\"Journal of Toxicology and Environmental Health-Part B-Critical Reviews\",\"volume\":\"21 5\",\"pages\":\"335-355\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/10937404.2018.1562391\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Toxicology and Environmental Health-Part B-Critical Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10937404.2018.1562391\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicology and Environmental Health-Part B-Critical Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10937404.2018.1562391","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Hearing loss, lead (Pb) exposure, and noise: a sound approach to ototoxicity exploration.
To determine the state of the research on ototoxic properties of Pb, evaluate possible synergistic effects with concurrent noise exposure, and identify opportunities to improve future research, we performed a review of the peer-reviewed literature to identify studies examining auditory damage due to Pb over the past 50 years. Thirty-eight studies (14 animal and 24 human) were reviewed. Of these, 24 suggested potential ototoxicity due to Pb exposure, while 14 found no evidence of ototoxicity. More animal studies are needed, especially those investigating Pb exposure levels that are occupationally and environmentally relevant to humans. Further investigations into potential interactions of Pb in the auditory system with other hazards and compounds that elicit ototoxicity are also needed in animal models. To better assess the effects of Pb exposure on the human auditory system and the possibility of a synergism with noise, future epidemiological studies need to carefully consider and address four main areas of uncertainty: (1) hearing examination and quantification of hearing loss, (2) Pb exposure evaluation, (3) noise exposure evaluation, and (4) the personal characteristics of those exposed. Two potentially confounding factors, protective factors and mixtures of ototoxicants, also warrant further exploration.
期刊介绍:
"Journal of Toxicology and Environmental Health: Part B - Critical Reviews" is an academic journal published by Taylor & Francis, focusing on the critical examination of research in the areas of environmental exposure and population health. With an ISSN identifier of 1093-7404, this journal has established itself as a significant source of scholarly content in the field of toxicology and environmental health.
Since its inception, the journal has published over 424 articles that have garnered 35,097 citations, reflecting its impact and relevance in the scientific community. Known for its comprehensive reviews, the journal also goes by the names "Critical Reviews" and "Journal of Toxicology & Environmental Health, Part B, Critical Reviews."
The journal's mission is to provide a platform for in-depth analysis and critical discussion of the latest findings in toxicology, environmental health, and related disciplines. By doing so, it contributes to the advancement of knowledge and understanding of the complex interactions between environmental factors and human health, aiding in the development of strategies to protect and improve public health.