{"title":"4-甲酰基吡啶亚胺衍生物的合成、表征、DPPH自由基清除、脲酶抑制、分子对接模拟及选择性检测Cu+2离子的DFT分析","authors":"Ambreen Zia, Syed Nawazish Ali, Erum Hasan, Mehreen Lateef, Syeda Rehana Zia, Sana Gul, Syeda Farah Bukhari, Nazish Dildar","doi":"10.2174/1570179420666230724102756","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to prepare three imine derivatives (1, 2, and 3) via a condensation reaction of phenyl hydrazine, 2-hydrazino pyridine, and 4-methoxy aniline with 4-formyl pyridine. Electron impact mass spectrometry (EIMS), proton nuclear magnetic resonance (1H-NMR), ultraviolet-visible (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy were utilized for the characterization. The chemosensing properties of [4((2-phenyl hydrazono)methyl) pyridine] (1), [2-(2-(pyridin-4-ylmethylene)hydrazinyl) pyridine] (2), and [4-methoxy-N-yl methylene) aniline] (3) imino bases have been explored for the first time in aqueous media. The photophysical properties of chemosensors (1, 2, and 3) were examined by various cations (Na+, NH4+, Ba+2, Ni+2, Ca+2, Hg+2, Cu+2, Mg+2, Mn+2, and Pd+2). The chemosensor (1) showed very selective binding capability with copper ions at low concentrations (20 μM) without the influence of any other mentioned ions. The maximum complexation was noted with Cu+2 and 1 at pH between 7 to 7.5. The stoichiometry binding ratio between chemosensor (1) and Cu+2 was determined by Job's plot and it was found to be 1:2. The current study explored the use of these Schiff bases for the first time as heterocyclic chemosensors. DPPH radical scavenging, urease enzyme inhibition activities, molecular docking simulation, and density functional theory (DFT) analysis of compounds 1, 2, and 3 were also conducted.</p>","PeriodicalId":11101,"journal":{"name":"Current organic synthesis","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, Characterization, DPPH Radical Scavenging, Urease Enzyme Inhibition, Molecular Docking Simulation, and DFT Analysis of Imine Derivatives of 4-formylpyridine with Selective Detection of Cu+2 Ions.\",\"authors\":\"Ambreen Zia, Syed Nawazish Ali, Erum Hasan, Mehreen Lateef, Syeda Rehana Zia, Sana Gul, Syeda Farah Bukhari, Nazish Dildar\",\"doi\":\"10.2174/1570179420666230724102756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to prepare three imine derivatives (1, 2, and 3) via a condensation reaction of phenyl hydrazine, 2-hydrazino pyridine, and 4-methoxy aniline with 4-formyl pyridine. Electron impact mass spectrometry (EIMS), proton nuclear magnetic resonance (1H-NMR), ultraviolet-visible (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy were utilized for the characterization. The chemosensing properties of [4((2-phenyl hydrazono)methyl) pyridine] (1), [2-(2-(pyridin-4-ylmethylene)hydrazinyl) pyridine] (2), and [4-methoxy-N-yl methylene) aniline] (3) imino bases have been explored for the first time in aqueous media. The photophysical properties of chemosensors (1, 2, and 3) were examined by various cations (Na+, NH4+, Ba+2, Ni+2, Ca+2, Hg+2, Cu+2, Mg+2, Mn+2, and Pd+2). The chemosensor (1) showed very selective binding capability with copper ions at low concentrations (20 μM) without the influence of any other mentioned ions. The maximum complexation was noted with Cu+2 and 1 at pH between 7 to 7.5. The stoichiometry binding ratio between chemosensor (1) and Cu+2 was determined by Job's plot and it was found to be 1:2. The current study explored the use of these Schiff bases for the first time as heterocyclic chemosensors. DPPH radical scavenging, urease enzyme inhibition activities, molecular docking simulation, and density functional theory (DFT) analysis of compounds 1, 2, and 3 were also conducted.</p>\",\"PeriodicalId\":11101,\"journal\":{\"name\":\"Current organic synthesis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current organic synthesis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2174/1570179420666230724102756\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current organic synthesis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/1570179420666230724102756","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Synthesis, Characterization, DPPH Radical Scavenging, Urease Enzyme Inhibition, Molecular Docking Simulation, and DFT Analysis of Imine Derivatives of 4-formylpyridine with Selective Detection of Cu+2 Ions.
This study aimed to prepare three imine derivatives (1, 2, and 3) via a condensation reaction of phenyl hydrazine, 2-hydrazino pyridine, and 4-methoxy aniline with 4-formyl pyridine. Electron impact mass spectrometry (EIMS), proton nuclear magnetic resonance (1H-NMR), ultraviolet-visible (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy were utilized for the characterization. The chemosensing properties of [4((2-phenyl hydrazono)methyl) pyridine] (1), [2-(2-(pyridin-4-ylmethylene)hydrazinyl) pyridine] (2), and [4-methoxy-N-yl methylene) aniline] (3) imino bases have been explored for the first time in aqueous media. The photophysical properties of chemosensors (1, 2, and 3) were examined by various cations (Na+, NH4+, Ba+2, Ni+2, Ca+2, Hg+2, Cu+2, Mg+2, Mn+2, and Pd+2). The chemosensor (1) showed very selective binding capability with copper ions at low concentrations (20 μM) without the influence of any other mentioned ions. The maximum complexation was noted with Cu+2 and 1 at pH between 7 to 7.5. The stoichiometry binding ratio between chemosensor (1) and Cu+2 was determined by Job's plot and it was found to be 1:2. The current study explored the use of these Schiff bases for the first time as heterocyclic chemosensors. DPPH radical scavenging, urease enzyme inhibition activities, molecular docking simulation, and density functional theory (DFT) analysis of compounds 1, 2, and 3 were also conducted.
期刊介绍:
Current Organic Synthesis publishes in-depth reviews, original research articles and letter/short communications on all areas of synthetic organic chemistry i.e. asymmetric synthesis, organometallic chemistry, novel synthetic approaches to complex organic molecules, carbohydrates, polymers, protein chemistry, DNA chemistry, supramolecular chemistry, molecular recognition and new synthetic methods in organic chemistry. The frontier reviews provide the current state of knowledge in these fields and are written by experts who are internationally known for their eminent research contributions. The journal is essential reading to all synthetic organic chemists. Current Organic Synthesis should prove to be of great interest to synthetic chemists in academia and industry who wish to keep abreast with recent developments in key fields of organic synthesis.