4-甲酰基吡啶亚胺衍生物的合成、表征、DPPH自由基清除、脲酶抑制、分子对接模拟及选择性检测Cu+2离子的DFT分析

IF 1.7 4区 化学 Q3 CHEMISTRY, ORGANIC
Ambreen Zia, Syed Nawazish Ali, Erum Hasan, Mehreen Lateef, Syeda Rehana Zia, Sana Gul, Syeda Farah Bukhari, Nazish Dildar
{"title":"4-甲酰基吡啶亚胺衍生物的合成、表征、DPPH自由基清除、脲酶抑制、分子对接模拟及选择性检测Cu+2离子的DFT分析","authors":"Ambreen Zia,&nbsp;Syed Nawazish Ali,&nbsp;Erum Hasan,&nbsp;Mehreen Lateef,&nbsp;Syeda Rehana Zia,&nbsp;Sana Gul,&nbsp;Syeda Farah Bukhari,&nbsp;Nazish Dildar","doi":"10.2174/1570179420666230724102756","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to prepare three imine derivatives (1, 2, and 3) via a condensation reaction of phenyl hydrazine, 2-hydrazino pyridine, and 4-methoxy aniline with 4-formyl pyridine. Electron impact mass spectrometry (EIMS), proton nuclear magnetic resonance (1H-NMR), ultraviolet-visible (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy were utilized for the characterization. The chemosensing properties of [4((2-phenyl hydrazono)methyl) pyridine] (1), [2-(2-(pyridin-4-ylmethylene)hydrazinyl) pyridine] (2), and [4-methoxy-N-yl methylene) aniline] (3) imino bases have been explored for the first time in aqueous media. The photophysical properties of chemosensors (1, 2, and 3) were examined by various cations (Na+, NH4+, Ba+2, Ni+2, Ca+2, Hg+2, Cu+2, Mg+2, Mn+2, and Pd+2). The chemosensor (1) showed very selective binding capability with copper ions at low concentrations (20 μM) without the influence of any other mentioned ions. The maximum complexation was noted with Cu+2 and 1 at pH between 7 to 7.5. The stoichiometry binding ratio between chemosensor (1) and Cu+2 was determined by Job's plot and it was found to be 1:2. The current study explored the use of these Schiff bases for the first time as heterocyclic chemosensors. DPPH radical scavenging, urease enzyme inhibition activities, molecular docking simulation, and density functional theory (DFT) analysis of compounds 1, 2, and 3 were also conducted.</p>","PeriodicalId":11101,"journal":{"name":"Current organic synthesis","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, Characterization, DPPH Radical Scavenging, Urease Enzyme Inhibition, Molecular Docking Simulation, and DFT Analysis of Imine Derivatives of 4-formylpyridine with Selective Detection of Cu+2 Ions.\",\"authors\":\"Ambreen Zia,&nbsp;Syed Nawazish Ali,&nbsp;Erum Hasan,&nbsp;Mehreen Lateef,&nbsp;Syeda Rehana Zia,&nbsp;Sana Gul,&nbsp;Syeda Farah Bukhari,&nbsp;Nazish Dildar\",\"doi\":\"10.2174/1570179420666230724102756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to prepare three imine derivatives (1, 2, and 3) via a condensation reaction of phenyl hydrazine, 2-hydrazino pyridine, and 4-methoxy aniline with 4-formyl pyridine. Electron impact mass spectrometry (EIMS), proton nuclear magnetic resonance (1H-NMR), ultraviolet-visible (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy were utilized for the characterization. The chemosensing properties of [4((2-phenyl hydrazono)methyl) pyridine] (1), [2-(2-(pyridin-4-ylmethylene)hydrazinyl) pyridine] (2), and [4-methoxy-N-yl methylene) aniline] (3) imino bases have been explored for the first time in aqueous media. The photophysical properties of chemosensors (1, 2, and 3) were examined by various cations (Na+, NH4+, Ba+2, Ni+2, Ca+2, Hg+2, Cu+2, Mg+2, Mn+2, and Pd+2). The chemosensor (1) showed very selective binding capability with copper ions at low concentrations (20 μM) without the influence of any other mentioned ions. The maximum complexation was noted with Cu+2 and 1 at pH between 7 to 7.5. The stoichiometry binding ratio between chemosensor (1) and Cu+2 was determined by Job's plot and it was found to be 1:2. The current study explored the use of these Schiff bases for the first time as heterocyclic chemosensors. DPPH radical scavenging, urease enzyme inhibition activities, molecular docking simulation, and density functional theory (DFT) analysis of compounds 1, 2, and 3 were also conducted.</p>\",\"PeriodicalId\":11101,\"journal\":{\"name\":\"Current organic synthesis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current organic synthesis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2174/1570179420666230724102756\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current organic synthesis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/1570179420666230724102756","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在通过苯基肼、2-肼基吡啶和4-甲氧基苯胺与4-甲酰基吡啶的缩合反应制备3种亚胺衍生物(1、2和3)。利用电子冲击质谱(EIMS)、质子核磁共振(1H-NMR)、紫外-可见(UV-Vis)和傅里叶变换红外(FTIR)光谱进行表征。首次研究了[4((2-苯基肼)甲基)吡啶](1)、[2-(2-(吡啶-4-基亚甲基)肼基)吡啶](2)和[4-甲氧基- n-基亚甲基)苯胺](3)亚胺碱在水溶液中的化学感应性质。采用不同阳离子(Na+、NH4+、Ba+2、Ni+2、Ca+2、Hg+2、Cu+2、Mg+2、Mn+2和Pd+2)考察了化学传感器(1、2和3)的光物理性质。该化学传感器(1)在低浓度(20 μM)下与铜离子具有很强的选择性结合能力,而不受其他离子的影响。在pH为7 ~ 7.5时,Cu+2和Cu+ 1的络合作用最大。化学传感器(1)与Cu+2的化学计量结合比由Job’s plot确定为1:2。目前的研究首次探索了这些希夫碱作为杂环化学传感器的使用。对化合物1、2、3进行了DPPH自由基清除、脲酶抑制活性、分子对接模拟和密度泛函理论(DFT)分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis, Characterization, DPPH Radical Scavenging, Urease Enzyme Inhibition, Molecular Docking Simulation, and DFT Analysis of Imine Derivatives of 4-formylpyridine with Selective Detection of Cu+2 Ions.

This study aimed to prepare three imine derivatives (1, 2, and 3) via a condensation reaction of phenyl hydrazine, 2-hydrazino pyridine, and 4-methoxy aniline with 4-formyl pyridine. Electron impact mass spectrometry (EIMS), proton nuclear magnetic resonance (1H-NMR), ultraviolet-visible (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy were utilized for the characterization. The chemosensing properties of [4((2-phenyl hydrazono)methyl) pyridine] (1), [2-(2-(pyridin-4-ylmethylene)hydrazinyl) pyridine] (2), and [4-methoxy-N-yl methylene) aniline] (3) imino bases have been explored for the first time in aqueous media. The photophysical properties of chemosensors (1, 2, and 3) were examined by various cations (Na+, NH4+, Ba+2, Ni+2, Ca+2, Hg+2, Cu+2, Mg+2, Mn+2, and Pd+2). The chemosensor (1) showed very selective binding capability with copper ions at low concentrations (20 μM) without the influence of any other mentioned ions. The maximum complexation was noted with Cu+2 and 1 at pH between 7 to 7.5. The stoichiometry binding ratio between chemosensor (1) and Cu+2 was determined by Job's plot and it was found to be 1:2. The current study explored the use of these Schiff bases for the first time as heterocyclic chemosensors. DPPH radical scavenging, urease enzyme inhibition activities, molecular docking simulation, and density functional theory (DFT) analysis of compounds 1, 2, and 3 were also conducted.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current organic synthesis
Current organic synthesis 化学-有机化学
CiteScore
3.40
自引率
5.60%
发文量
86
审稿时长
6-12 weeks
期刊介绍: Current Organic Synthesis publishes in-depth reviews, original research articles and letter/short communications on all areas of synthetic organic chemistry i.e. asymmetric synthesis, organometallic chemistry, novel synthetic approaches to complex organic molecules, carbohydrates, polymers, protein chemistry, DNA chemistry, supramolecular chemistry, molecular recognition and new synthetic methods in organic chemistry. The frontier reviews provide the current state of knowledge in these fields and are written by experts who are internationally known for their eminent research contributions. The journal is essential reading to all synthetic organic chemists. Current Organic Synthesis should prove to be of great interest to synthetic chemists in academia and industry who wish to keep abreast with recent developments in key fields of organic synthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信