{"title":"与最近的气候变化相关的局部灭绝加速。","authors":"Kim L. Holzmann, Ramona L. Walls, John J. Wiens","doi":"10.1111/ele.14303","DOIUrl":null,"url":null,"abstract":"<p>Climate change has already caused local extinction in many plants and animals, based on surveys spanning many decades. As climate change accelerates, the pace of these extinctions may also accelerate, potentially leading to large-scale, species-level extinctions. We tested this hypothesis in a montane lizard. We resurveyed 18 mountain ranges in 2021–2022 after only ~7 years. We found rates of local extinction among the fastest ever recorded, which have tripled in the past ~7 years relative to the preceding ~42 years. Further, climate change generated local extinction in ~7 years similar to that seen in other organisms over ~70 years. Yet, contrary to expectations, populations at two of the hottest sites survived. We found that genomic data helped predict which populations survived and which went extinct. Overall, we show the increasing risk to biodiversity posed by accelerating climate change and the opportunity to study its effects over surprisingly brief timescales.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"26 11","pages":"1877-1886"},"PeriodicalIF":7.6000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating local extinction associated with very recent climate change\",\"authors\":\"Kim L. Holzmann, Ramona L. Walls, John J. Wiens\",\"doi\":\"10.1111/ele.14303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Climate change has already caused local extinction in many plants and animals, based on surveys spanning many decades. As climate change accelerates, the pace of these extinctions may also accelerate, potentially leading to large-scale, species-level extinctions. We tested this hypothesis in a montane lizard. We resurveyed 18 mountain ranges in 2021–2022 after only ~7 years. We found rates of local extinction among the fastest ever recorded, which have tripled in the past ~7 years relative to the preceding ~42 years. Further, climate change generated local extinction in ~7 years similar to that seen in other organisms over ~70 years. Yet, contrary to expectations, populations at two of the hottest sites survived. We found that genomic data helped predict which populations survived and which went extinct. Overall, we show the increasing risk to biodiversity posed by accelerating climate change and the opportunity to study its effects over surprisingly brief timescales.</p>\",\"PeriodicalId\":161,\"journal\":{\"name\":\"Ecology Letters\",\"volume\":\"26 11\",\"pages\":\"1877-1886\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ele.14303\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.14303","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Accelerating local extinction associated with very recent climate change
Climate change has already caused local extinction in many plants and animals, based on surveys spanning many decades. As climate change accelerates, the pace of these extinctions may also accelerate, potentially leading to large-scale, species-level extinctions. We tested this hypothesis in a montane lizard. We resurveyed 18 mountain ranges in 2021–2022 after only ~7 years. We found rates of local extinction among the fastest ever recorded, which have tripled in the past ~7 years relative to the preceding ~42 years. Further, climate change generated local extinction in ~7 years similar to that seen in other organisms over ~70 years. Yet, contrary to expectations, populations at two of the hottest sites survived. We found that genomic data helped predict which populations survived and which went extinct. Overall, we show the increasing risk to biodiversity posed by accelerating climate change and the opportunity to study its effects over surprisingly brief timescales.
期刊介绍:
Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.