Dan Nana Osei Bonsu , Denice Higgins , Jeremy J. Austin
{"title":"从清洁空间到犯罪现场:探索从二氧化钛涂层的自清洁基质中回收微量DNA。","authors":"Dan Nana Osei Bonsu , Denice Higgins , Jeremy J. Austin","doi":"10.1016/j.scijus.2023.07.003","DOIUrl":null,"url":null,"abstract":"<div><p>Titanium dioxide (titania, TiO<sub>2</sub>) is frequently used as a coating for a variety of self-cleaning products, such as antifogging vehicle mirrors, ceramic tiles, and glass windows because of its distinct physiochemical features. When exposed to light TiO<sub>2</sub> causes photocatalytic decomposition of organic contaminants, potentially compromising DNA integrity. The impact of TiO<sub>2</sub>-coated commercial glasses, Bioclean® and SaniTise™, on trace DNA persistence, recovery, and profiling was investigated. DNA in saliva and touch samples deposited on self-cleaning glass slides exposed to indoor fluorescent light for up to seven days was more degraded than control samples indicating some degree of fluorescent light-induced photocatalytic activity of the self-cleaning surfaces. When exposed to sunlight, DNA yields from saliva and touch samples deposited on the titania-coated substrates decreased rapidly, with a corresponding increase in DNA degradation. After three days no DNA samples applied to self-cleaning glass and exposed to natural sunlight yielded STR profiles. These results suggest that the photocatalytic activation of TiO<sub>2</sub> is the likely mechanism of action underlying the extreme DNA degradation on the Bioclean® and SaniTise™ glasses. Consequently, rapid sample collection and use may be warranted in casework scenarios involving TiO<sub>2</sub>-coated materials.</p></div>","PeriodicalId":49565,"journal":{"name":"Science & Justice","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From clean spaces to crime scenes: Exploring trace DNA recovery from titania-coated self-cleaning substrates\",\"authors\":\"Dan Nana Osei Bonsu , Denice Higgins , Jeremy J. Austin\",\"doi\":\"10.1016/j.scijus.2023.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Titanium dioxide (titania, TiO<sub>2</sub>) is frequently used as a coating for a variety of self-cleaning products, such as antifogging vehicle mirrors, ceramic tiles, and glass windows because of its distinct physiochemical features. When exposed to light TiO<sub>2</sub> causes photocatalytic decomposition of organic contaminants, potentially compromising DNA integrity. The impact of TiO<sub>2</sub>-coated commercial glasses, Bioclean® and SaniTise™, on trace DNA persistence, recovery, and profiling was investigated. DNA in saliva and touch samples deposited on self-cleaning glass slides exposed to indoor fluorescent light for up to seven days was more degraded than control samples indicating some degree of fluorescent light-induced photocatalytic activity of the self-cleaning surfaces. When exposed to sunlight, DNA yields from saliva and touch samples deposited on the titania-coated substrates decreased rapidly, with a corresponding increase in DNA degradation. After three days no DNA samples applied to self-cleaning glass and exposed to natural sunlight yielded STR profiles. These results suggest that the photocatalytic activation of TiO<sub>2</sub> is the likely mechanism of action underlying the extreme DNA degradation on the Bioclean® and SaniTise™ glasses. Consequently, rapid sample collection and use may be warranted in casework scenarios involving TiO<sub>2</sub>-coated materials.</p></div>\",\"PeriodicalId\":49565,\"journal\":{\"name\":\"Science & Justice\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science & Justice\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1355030623000813\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, LEGAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science & Justice","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1355030623000813","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
From clean spaces to crime scenes: Exploring trace DNA recovery from titania-coated self-cleaning substrates
Titanium dioxide (titania, TiO2) is frequently used as a coating for a variety of self-cleaning products, such as antifogging vehicle mirrors, ceramic tiles, and glass windows because of its distinct physiochemical features. When exposed to light TiO2 causes photocatalytic decomposition of organic contaminants, potentially compromising DNA integrity. The impact of TiO2-coated commercial glasses, Bioclean® and SaniTise™, on trace DNA persistence, recovery, and profiling was investigated. DNA in saliva and touch samples deposited on self-cleaning glass slides exposed to indoor fluorescent light for up to seven days was more degraded than control samples indicating some degree of fluorescent light-induced photocatalytic activity of the self-cleaning surfaces. When exposed to sunlight, DNA yields from saliva and touch samples deposited on the titania-coated substrates decreased rapidly, with a corresponding increase in DNA degradation. After three days no DNA samples applied to self-cleaning glass and exposed to natural sunlight yielded STR profiles. These results suggest that the photocatalytic activation of TiO2 is the likely mechanism of action underlying the extreme DNA degradation on the Bioclean® and SaniTise™ glasses. Consequently, rapid sample collection and use may be warranted in casework scenarios involving TiO2-coated materials.
期刊介绍:
Science & Justice provides a forum to promote communication and publication of original articles, reviews and correspondence on subjects that spark debates within the Forensic Science Community and the criminal justice sector. The journal provides a medium whereby all aspects of applying science to legal proceedings can be debated and progressed. Science & Justice is published six times a year, and will be of interest primarily to practising forensic scientists and their colleagues in related fields. It is chiefly concerned with the publication of formal scientific papers, in keeping with its international learned status, but will not accept any article describing experimentation on animals which does not meet strict ethical standards.
Promote communication and informed debate within the Forensic Science Community and the criminal justice sector.
To promote the publication of learned and original research findings from all areas of the forensic sciences and by so doing to advance the profession.
To promote the publication of case based material by way of case reviews.
To promote the publication of conference proceedings which are of interest to the forensic science community.
To provide a medium whereby all aspects of applying science to legal proceedings can be debated and progressed.
To appeal to all those with an interest in the forensic sciences.