{"title":"电针抑制脑缺血灌注诱发的铁下垂。","authors":"Gui-Ling Wang, Shu-Ying Xu, He-Qun Lv, Chao Zhang, Yong-Jun Peng","doi":"10.2174/1567202620666230623153728","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Electroacupuncture (EA) treatment has been recommended by World Health Organization (WHO) for years on cerebral ischemia treatment, but the specific mechanism is still elusive. Studies have shown that EA can relieve brain damage after ischemic stroke by inhibiting programmed cell death (PCD), such as apoptosis, necroptosis, and autophagy. Ferroptosis, a unique form of cell death, has been highlighted recently and found to occur in I/R injury. We, therefore, investigated whether EA plays an essential role in relieving cerebral I/R injury via ferroptosis.</p><p><strong>Methods: </strong>The modified MCAO/R rats model was established and then divided into four groups with or without EA treatment. Neurological deficit score and TTC staining were used to evaluate the neurological deficit and infarct volume of each group. Transmission electron microscope (TEM) and immunofluorescence staining were applied for mitochondrial ultrastructure and ROS accumulation observation, respectively. The proteins and mRNA expression of ACSL4, TFR1, and GPX4 were assessed by western blot and qPCR to detect the progress of ferroptosis.</p><p><strong>Results: </strong>EA treatment improved neurological deficits and reduced infarct volume. Moreover, EA significantly relieved the mitochondrial morphological changes and inhibited ROS Production in MCAO rats. In terms of its mechanism, EA obviously decreased the ACSL4 and TFR1 expressions and promoted GPX4 levels in MCAO/R model rats.</p><p><strong>Conclusion: </strong>These findings indicate that EA might play an essential role in relieving cerebral I/R injury via ferroptosis.</p>","PeriodicalId":10879,"journal":{"name":"Current neurovascular research","volume":"20 3","pages":"346-353"},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Electroacupuncture Inhibits Ferroptosis Induced by Cerebral Ischemiareperfusion.\",\"authors\":\"Gui-Ling Wang, Shu-Ying Xu, He-Qun Lv, Chao Zhang, Yong-Jun Peng\",\"doi\":\"10.2174/1567202620666230623153728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Electroacupuncture (EA) treatment has been recommended by World Health Organization (WHO) for years on cerebral ischemia treatment, but the specific mechanism is still elusive. Studies have shown that EA can relieve brain damage after ischemic stroke by inhibiting programmed cell death (PCD), such as apoptosis, necroptosis, and autophagy. Ferroptosis, a unique form of cell death, has been highlighted recently and found to occur in I/R injury. We, therefore, investigated whether EA plays an essential role in relieving cerebral I/R injury via ferroptosis.</p><p><strong>Methods: </strong>The modified MCAO/R rats model was established and then divided into four groups with or without EA treatment. Neurological deficit score and TTC staining were used to evaluate the neurological deficit and infarct volume of each group. Transmission electron microscope (TEM) and immunofluorescence staining were applied for mitochondrial ultrastructure and ROS accumulation observation, respectively. The proteins and mRNA expression of ACSL4, TFR1, and GPX4 were assessed by western blot and qPCR to detect the progress of ferroptosis.</p><p><strong>Results: </strong>EA treatment improved neurological deficits and reduced infarct volume. Moreover, EA significantly relieved the mitochondrial morphological changes and inhibited ROS Production in MCAO rats. In terms of its mechanism, EA obviously decreased the ACSL4 and TFR1 expressions and promoted GPX4 levels in MCAO/R model rats.</p><p><strong>Conclusion: </strong>These findings indicate that EA might play an essential role in relieving cerebral I/R injury via ferroptosis.</p>\",\"PeriodicalId\":10879,\"journal\":{\"name\":\"Current neurovascular research\",\"volume\":\"20 3\",\"pages\":\"346-353\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current neurovascular research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/1567202620666230623153728\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current neurovascular research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1567202620666230623153728","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Electroacupuncture Inhibits Ferroptosis Induced by Cerebral Ischemiareperfusion.
Background: Electroacupuncture (EA) treatment has been recommended by World Health Organization (WHO) for years on cerebral ischemia treatment, but the specific mechanism is still elusive. Studies have shown that EA can relieve brain damage after ischemic stroke by inhibiting programmed cell death (PCD), such as apoptosis, necroptosis, and autophagy. Ferroptosis, a unique form of cell death, has been highlighted recently and found to occur in I/R injury. We, therefore, investigated whether EA plays an essential role in relieving cerebral I/R injury via ferroptosis.
Methods: The modified MCAO/R rats model was established and then divided into four groups with or without EA treatment. Neurological deficit score and TTC staining were used to evaluate the neurological deficit and infarct volume of each group. Transmission electron microscope (TEM) and immunofluorescence staining were applied for mitochondrial ultrastructure and ROS accumulation observation, respectively. The proteins and mRNA expression of ACSL4, TFR1, and GPX4 were assessed by western blot and qPCR to detect the progress of ferroptosis.
Results: EA treatment improved neurological deficits and reduced infarct volume. Moreover, EA significantly relieved the mitochondrial morphological changes and inhibited ROS Production in MCAO rats. In terms of its mechanism, EA obviously decreased the ACSL4 and TFR1 expressions and promoted GPX4 levels in MCAO/R model rats.
Conclusion: These findings indicate that EA might play an essential role in relieving cerebral I/R injury via ferroptosis.
期刊介绍:
Current Neurovascular Research provides a cross platform for the publication of scientifically rigorous research that addresses disease mechanisms of both neuronal and vascular origins in neuroscience. The journal serves as an international forum publishing novel and original work as well as timely neuroscience research articles, full-length/mini reviews in the disciplines of cell developmental disorders, plasticity, and degeneration that bridges the gap between basic science research and clinical discovery. Current Neurovascular Research emphasizes the elucidation of disease mechanisms, both cellular and molecular, which can impact the development of unique therapeutic strategies for neuronal and vascular disorders.