Anastasios Ziogas, Andreas Mokros, Wolfram Kawohl, Mateo de Bardeci, Ilyas Olbrich, Benedikt Habermeyer, Elmar Habermeyer, Sebastian Olbrich
{"title":"深度学习识别与性取向相关的脑电图来源。","authors":"Anastasios Ziogas, Andreas Mokros, Wolfram Kawohl, Mateo de Bardeci, Ilyas Olbrich, Benedikt Habermeyer, Elmar Habermeyer, Sebastian Olbrich","doi":"10.1159/000530931","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>It is unclear if sexual orientation is a biological trait that has neurofunctional footprints. With deep learning, the power to classify biological datasets without an a priori selection of features has increased by magnitudes. The aim of this study was to correctly classify resting-state electroencephalogram (EEG) data from males with different sexual orientation using deep learning and to explore techniques to identify the learned distinguishing features.</p><p><strong>Methods: </strong>Three cohorts (homosexual men, heterosexual men, and a mixed sex cohort), one pretrained network on sex classification, and one newly trained network for sexual orientation classification were used to classify sex. Further, Grad-CAM methodology and source localization were used to identify the spatiotemporal patterns that were used for differentiation by the networks.</p><p><strong>Results: </strong>Using a pretrained network for classification of males and females, no differences existed between classification of homosexual and heterosexual males. The newly trained network was able, however, to correctly classify the cohorts with a total accuracy of 83%. The retrograde activation using Grad-CAM technology yielded distinctive functional EEG patterns in the Brodmann area 40 and 1 when combined with Fourier analysis and a source localization.</p><p><strong>Discussion: </strong>This study shows that electrophysiological trait markers of male sexual orientation can be identified using deep learning. These patterns are different from the differentiating signatures of males and females in a resting-state EEG.</p>","PeriodicalId":19239,"journal":{"name":"Neuropsychobiology","volume":"82 4","pages":"234-245"},"PeriodicalIF":2.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning in the Identification of Electroencephalogram Sources Associated with Sexual Orientation.\",\"authors\":\"Anastasios Ziogas, Andreas Mokros, Wolfram Kawohl, Mateo de Bardeci, Ilyas Olbrich, Benedikt Habermeyer, Elmar Habermeyer, Sebastian Olbrich\",\"doi\":\"10.1159/000530931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>It is unclear if sexual orientation is a biological trait that has neurofunctional footprints. With deep learning, the power to classify biological datasets without an a priori selection of features has increased by magnitudes. The aim of this study was to correctly classify resting-state electroencephalogram (EEG) data from males with different sexual orientation using deep learning and to explore techniques to identify the learned distinguishing features.</p><p><strong>Methods: </strong>Three cohorts (homosexual men, heterosexual men, and a mixed sex cohort), one pretrained network on sex classification, and one newly trained network for sexual orientation classification were used to classify sex. Further, Grad-CAM methodology and source localization were used to identify the spatiotemporal patterns that were used for differentiation by the networks.</p><p><strong>Results: </strong>Using a pretrained network for classification of males and females, no differences existed between classification of homosexual and heterosexual males. The newly trained network was able, however, to correctly classify the cohorts with a total accuracy of 83%. The retrograde activation using Grad-CAM technology yielded distinctive functional EEG patterns in the Brodmann area 40 and 1 when combined with Fourier analysis and a source localization.</p><p><strong>Discussion: </strong>This study shows that electrophysiological trait markers of male sexual orientation can be identified using deep learning. These patterns are different from the differentiating signatures of males and females in a resting-state EEG.</p>\",\"PeriodicalId\":19239,\"journal\":{\"name\":\"Neuropsychobiology\",\"volume\":\"82 4\",\"pages\":\"234-245\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropsychobiology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1159/000530931\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropsychobiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1159/000530931","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Deep Learning in the Identification of Electroencephalogram Sources Associated with Sexual Orientation.
Introduction: It is unclear if sexual orientation is a biological trait that has neurofunctional footprints. With deep learning, the power to classify biological datasets without an a priori selection of features has increased by magnitudes. The aim of this study was to correctly classify resting-state electroencephalogram (EEG) data from males with different sexual orientation using deep learning and to explore techniques to identify the learned distinguishing features.
Methods: Three cohorts (homosexual men, heterosexual men, and a mixed sex cohort), one pretrained network on sex classification, and one newly trained network for sexual orientation classification were used to classify sex. Further, Grad-CAM methodology and source localization were used to identify the spatiotemporal patterns that were used for differentiation by the networks.
Results: Using a pretrained network for classification of males and females, no differences existed between classification of homosexual and heterosexual males. The newly trained network was able, however, to correctly classify the cohorts with a total accuracy of 83%. The retrograde activation using Grad-CAM technology yielded distinctive functional EEG patterns in the Brodmann area 40 and 1 when combined with Fourier analysis and a source localization.
Discussion: This study shows that electrophysiological trait markers of male sexual orientation can be identified using deep learning. These patterns are different from the differentiating signatures of males and females in a resting-state EEG.
期刊介绍:
The biological approach to mental disorders continues to yield innovative findings of clinical importance, particularly if methodologies are combined. This journal collects high quality empirical studies from various experimental and clinical approaches in the fields of Biological Psychiatry, Biological Psychology and Neuropsychology. It features original, clinical and basic research in the fields of neurophysiology and functional imaging, neuropharmacology and neurochemistry, neuroendocrinology and neuroimmunology, genetics and their relationships with normal psychology and psychopathology. In addition, the reader will find studies on animal models of mental disorders and therapeutic interventions, and pharmacoelectroencephalographic studies. Regular reviews report new methodologic approaches, and selected case reports provide hints for future research. ''Neuropsychobiology'' is a complete record of strategies and methodologies employed to study the biological basis of mental functions including their interactions with psychological and social factors.