Çiğdem Yazici-Mutlu, Arzu Keskin-Aktan, Kazime G Akbulut
{"title":"姜黄素和褪黑素治疗对成年大鼠大脑皮层的影响。","authors":"Çiğdem Yazici-Mutlu, Arzu Keskin-Aktan, Kazime G Akbulut","doi":"10.4149/gpb_2022047","DOIUrl":null,"url":null,"abstract":"The study investigated the effect of exogenous melatonin and (or) curcumin treatment on the cerebral cortex of adult rats. In this context, malondialdehyde (MDA), nitric oxide (NO), glutathione (GSH), superoxide dismutase (SOD), nuclear factor E2-related factor 2 (Nrf2) and SIRT2 protein expression were examined. A total of 30 Wistar albino rats involved in the study were randomly divided into five groups. Over 30 days, the control groups received phosphate-buffered saline or dimethyl sulfoxide injections, and the treatment groups received melatonin, curcumin, or a combination of melatonin and curcumin injections. In the cerebral cortex homogenates, the MDA, GSH, and sum of NO were respectively determined by the thiobarbituric acid, modified Ellman and Griess test methods. The SOD and Nrf2 levels were examined using the ELISA method and SIRT2 protein expression using the Western blot technique. The study found that both melatonin and curcumin treatments significantly reduced lipid peroxidation and SIRT2 protein expression levels (p < 0.05) and increased the Nrf2 level in the cytoplasm (p < 0.05). The study revealed that curcumin and melatonin treatments reduced MDA and SIRT2 protein expression level and increased intracellular Nrf2, GSH, and SOD in the cortex tissue. We also found that the combined melatonin and curcumin treatment produced no synergistic effect.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effects of curcumin and melatonin treatment in the cerebral cortex of adult rats.\",\"authors\":\"Çiğdem Yazici-Mutlu, Arzu Keskin-Aktan, Kazime G Akbulut\",\"doi\":\"10.4149/gpb_2022047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study investigated the effect of exogenous melatonin and (or) curcumin treatment on the cerebral cortex of adult rats. In this context, malondialdehyde (MDA), nitric oxide (NO), glutathione (GSH), superoxide dismutase (SOD), nuclear factor E2-related factor 2 (Nrf2) and SIRT2 protein expression were examined. A total of 30 Wistar albino rats involved in the study were randomly divided into five groups. Over 30 days, the control groups received phosphate-buffered saline or dimethyl sulfoxide injections, and the treatment groups received melatonin, curcumin, or a combination of melatonin and curcumin injections. In the cerebral cortex homogenates, the MDA, GSH, and sum of NO were respectively determined by the thiobarbituric acid, modified Ellman and Griess test methods. The SOD and Nrf2 levels were examined using the ELISA method and SIRT2 protein expression using the Western blot technique. The study found that both melatonin and curcumin treatments significantly reduced lipid peroxidation and SIRT2 protein expression levels (p < 0.05) and increased the Nrf2 level in the cytoplasm (p < 0.05). The study revealed that curcumin and melatonin treatments reduced MDA and SIRT2 protein expression level and increased intracellular Nrf2, GSH, and SOD in the cortex tissue. We also found that the combined melatonin and curcumin treatment produced no synergistic effect.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.4149/gpb_2022047\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.4149/gpb_2022047","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Effects of curcumin and melatonin treatment in the cerebral cortex of adult rats.
The study investigated the effect of exogenous melatonin and (or) curcumin treatment on the cerebral cortex of adult rats. In this context, malondialdehyde (MDA), nitric oxide (NO), glutathione (GSH), superoxide dismutase (SOD), nuclear factor E2-related factor 2 (Nrf2) and SIRT2 protein expression were examined. A total of 30 Wistar albino rats involved in the study were randomly divided into five groups. Over 30 days, the control groups received phosphate-buffered saline or dimethyl sulfoxide injections, and the treatment groups received melatonin, curcumin, or a combination of melatonin and curcumin injections. In the cerebral cortex homogenates, the MDA, GSH, and sum of NO were respectively determined by the thiobarbituric acid, modified Ellman and Griess test methods. The SOD and Nrf2 levels were examined using the ELISA method and SIRT2 protein expression using the Western blot technique. The study found that both melatonin and curcumin treatments significantly reduced lipid peroxidation and SIRT2 protein expression levels (p < 0.05) and increased the Nrf2 level in the cytoplasm (p < 0.05). The study revealed that curcumin and melatonin treatments reduced MDA and SIRT2 protein expression level and increased intracellular Nrf2, GSH, and SOD in the cortex tissue. We also found that the combined melatonin and curcumin treatment produced no synergistic effect.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.